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Abstra
tIn the age of multi-
ore pro
essors and ubiquitous 
omputing, more tasks than ever needto be performed by multiple, spatially disjun
t 
omputing fa
ilities in a parallel fash-ion. The inherent 
ommuni
ation delays in su
h systems make a purely syn
hronousapproa
h infeasible. While spe
ifying a system, assuming syn
hrony makes the designpro
ess simpler. It is not 
lear however, whether an asyn
hronous system 
an implementa syn
hronous spe
i�
ation faithfully. The present thesis gives a 
onstru
tive proof thatan implementation exists whi
h is behaviourally equivalent to the spe
i�
ation up to asuitable linear-time equivalen
e. Both spe
i�
ation and implementation are given in Petrinets, a model well suited to des
ribe parallelism and distribution of a system.Keywords Asyn
hrony, Syn
hrony, Petri Nets, Distributed, Completed Step Tra
e Equivalen
e
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1 Introdu
tionIn today's 
omputing world, performan
e depends more than ever on parallelism. As moreand more systems 
onsist of multiple pro
essing units, software 
an no longer exe
ute in astraight serial one-step-after-the-next manner if the full potential of a system needs to berealised. Rather, software must try to take as many steps in parallel as possible. Whiledoing so, it must still behave 
orre
tly, a feat even serial software often fails to perform.Additional 
omplexities for the parallel 
ase emerge from an enlarged state-spa
e andredu
ed debuggability due to non-determinism of s
heduling.To guide the 
reation of new and 
orre
t software whi
h makes maximal use of the novelparallel te
hnologies, mathemati
al models are used. These models abstra
t from someapparently less important aspe
ts of the system to show parti
ular properties about theremaining aspe
ts. One often ignored aspe
t is time, in parti
ular the duration of a
tionsand 
omputations. The ultimately implemented system however will be embedded in auniverse whi
h 
hanges over time. As always when modelling, observations about theabstra
t model 
arry over into the real world only where the assumptions underlying theabstra
tion are valid.There are a multitude of possibilities to abstra
t time based 
hanges of the real worldin a timeless model. Choosing the right abstra
tion for the system in question 
an be
ru
ial. If too �ne an abstra
tion is 
hosen, theoreti
al validation of the software mightbe infeasible, if the abstra
tion is too broad, the theoreti
ally proven 
orre
tness wrt. thebroad abstra
tion might not 
arry over into the real world.To 
ompare two di�erent ways to abstra
t time, 
onsider the example robot in Figure 1.1.It needs to enter one of the two 
orridors to rea
h its goal, a barrel of ma
hine oil.Unfortunately, both 
orridors have a door, one of whi
h will be 
losed. To avoid 
rashinginto 
losed doors, the robot will �rst probe the state of the two doors before attemptingto move. Drawing a diagram of the robot's mind, one might arrive at something akinto Figure 1.2. After the probing a
tion, the robot might de
ide either for the left orthe right door. This model however negle
ts the fa
t that the robot �rst de
ides andthen moves. Making this distin
tion between thinking and movement expli
it leads toFigure 1.3. Whether these two des
riptions of the robot's mind are equivalent or notdepends on whi
h abstra
tion one 
hooses.If one 
onsiders a world whi
h might 
hange arbitrarily fast, in parti
ular faster thanthe robot thinks, the �rst model des
ribes a robot whi
h retains both movement optionsuntil movement has been exe
uted, whereas the se
ond model suggests that the robot �rstthinks for a while and then de
ides for one movement option. If the doors swit
hed statusbetween that de
ision and the attempted movement, the robot might deadlo
k, futilely1
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Figure 1.1: A robot wants to rea
h an oil barrel, yet some doors blo
k its way

probemove left move right
Figure 1.2: The mind of a non-thinking robot
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τ τ

move left move right
Figure 1.3: The mind of a robot whi
h thinks for a short timeattempting to exe
ute a now impossible movement a
tion. Assuming a su�
iently smartrobot, this di�eren
e in the out
ome is only possible if the doors move faster than the robotthinks. Clearly, assuming an in�nitely fast 
hanging world is a very robust assumption.If a system 
an operate su

essfully under that assumption, it 
an surely operate in thereal universe.Conversely, assuming a stati
 world sidesteps the issue of how to abstra
t the timingof 
hanges therein. Under that assumption, the two models of the robot's behaviourwould be 
onsidered equivalent. While su
h an assumption is 
learly not as robust asthe earlier one, today's highly integrated 
ir
uits allow the 
onstru
tion of robots whi
hthink substantially faster than the usual door moves. Validation of a system under theassumption that the world is stati
 is meaningful if the 
omputer is fast in 
omparison tothe system it 
ontrols.Between these two extreme assumptions, one 
an 
reate a whole spe
trum of di�erentshades of time abstra
tion, giving rise to a spe
trum of equivalen
e relations betweenbehaviours. This so 
alled linear-time bran
hing-time spe
trum has been des
ribed ex-tensively in [4℄ and [6℄. The frontier between linear-time and bran
hing-time is naturallya grey area. Nonetheless, the assumption of an in�nitely fast 
hanging world 
orrespondsto bran
hing-time equivalen
es, whereas a stati
 world assumption underlies linear-timeequivalen
es.The 
hoi
e between di�erent behavioural equivalen
es be
omes even more 
ompli
ated3
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Figure 1.4: A syn
hronous spe
i�
ation and a partitioning into lo
ationsin the light of parallelism, whi
h is often ne
essary to build performant systems. Onepossibility is to remove parallelism by substituting it with all possible interleavings of theparallel a
tions, another is to allow all possible interleavings but retain a possible parallelstep, yet another is to model all 
ausal dependen
ies expli
itly as done in pomset-tra
esemanti
s [20℄.This thesis is 
on
erned with distributed system, that is systems whi
h perform a
tivitieswithin multiple (usually spatially) distributed lo
ations in a 
oordinated fashion. Compu-tations within di�erent lo
ations 
an naturally pro
eed in parallel unless they need a

essto shared resour
es. A

ess to these resour
es is often the main problem in su
h systems,
ompli
ated by the fa
t that the di�erent lo
ations 
annot 
ommuni
ate instantaneously,but ea
h message between lo
ations must travel some distan
e before rea
hing its desti-nation, whi
h takes time. As no syn
hronous 
ommuni
ation primitives are available su
ha system is 
alled asyn
hronous.Nonetheless, it is often easier to design a system as if syn
hronous 
ommuni
ation werepossible. The question then is: Given a syn
hronous spe
i�
ation of a system, 
an itbe implemented in a distributed and hen
e asyn
hronous way? Compare Figure 1.4. Asystem has been spe
i�ed using the syn
hronous model of Petri nets [19℄. It has two sharedresour
es at the top, and may either perform the a
tions a and c in parallel, 
onsuming theleft and right resour
e respe
tively, or it may perform b while 
onsuming both resour
esat on
e. The elements of the system have been assigned to di�erent lo
ations howeverand 
an only 
ommuni
ate asyn
hronously. Is there any proto
ol the lo
ations 
an followin order to ful�l the syn
hronous spe
i�
ation?The answer to that question is not a binary one. Various proto
ols might exist, dependingon what exa
tly it means to �ful�l the syn
hronous spe
i�
ation�, i.e. whi
h behaviouralequivalen
e one uses to 
ompare syn
hronous spe
i�
ation and distributed implementa-tion. While it was known [7℄ that no proto
ol 
an exist for most bran
hing-time equiva-len
es, as outlined in Se
tion 4, the question was open for linear-time equivalen
es.4



The present thesis aims to show that, given a syn
hronous spe
i�
ation of a parallelsystem, a distributed implementation of this spe
i�
ation exists, under the assumptionsthat� the environment must be slow in 
omparison to the implementation, i.e. the imple-mentation is only 
orre
t up to linear-time equivalen
es, and� the implementation may from time to time de
ide to perform steps in sequen
ewhi
h were parallel in the spe
i�
ation.This implementation may not always be useful in the real world. If the hardware usedto implement the distributed system is too slow, the real world will 
hange faster thanthe system 
an 
ope with. It is my personal 
onje
ture that a �nal answer about whatis distributable in the real world will only be rea
hable by taking time fully into a

ount.However that is out of the s
ope of this thesis.The se
ond assumption is related to the 
hosen 
on
ept of parallelism. This thesis assumesthat whenever a system 
an perform two steps in parallel, these steps may also o

ur insequen
e, whi
h is not an unusual assumption. There is a deviation from the usualintuition however, whi
h weens that the interleaving of events is eli
ited by imperfe
tionsin timing. The systems in this thesis however will de
ide to perform steps in expli
itsequen
e. Some more details on this deviation are given in Se
tion 6.Apart from the problems about time-abstra
tion and parallelism 
onsidered above, thereis one other problem in distributed systems whi
h this thesis 
overs. Di�erent 
ommuni-
ations between di�erent lo
ations in a distributed systems might pro
eed with di�erentspeeds. This 
an lead to a phenomenon 
alled message overtaking, where messages arere
eived in a di�erent sequen
e than they were sent. This thesis makes no assumptionsabout properties of message overtaking at all, i.e. all forms of message overtaking areallowed.Other problems, like 
ontent en
oding within messages and error dete
tion and re
overywill be abstra
ted away as far as possible. Abstra
t intera
tions between parallel 
ompo-nents are 
onsidered instead. To model these intera
tions and parallel 
omponents, Petrinets will be used, whi
h allow a very intuitive and dire
t de�nition of distributability.This notion of distributability will also guarantee that no syn
hronous 
ommuni
ationbetween di�erent distributed 
omponents 
an happen.Furthermore, as the main Petri net 
onstru
tion in this thesis is rather lengthy, �nitestate ma
hines with a non-standard parallel 
ombining operator will be employed as anabbreviation for a 
ertain 
lass of Petri nets, thus shortening the 
onstru
tion and theproofs.Having now 
leared up the s
ope of the thesis, a short overview of the 
ontents should benext. Both Petri nets and the formal model based on state ma
hines will be introdu
ed inSe
tion 2 �rst and then extended to a distributed setting in Se
tion 3. Se
tion 4 will giveintuition and a short te
hni
al explanation on why 
ertain behaviours have no distributedimplementation under bran
hing-time semanti
s. The main results of this thesis will be5



1 Introdu
tiongiven in Se
tion 5, where a 
onstru
tive proof for a distributed implementation of Petrinets will be given. Finally Se
tion 6 will give a 
on
lusion and literature overview.Proofs in the earlier 
hapters will only be sket
hed in the main text, as the results are notterribly deep and formal proofs for the Isabelle/HOL tool [17℄ have been 
reated for mostof them and are available in the appendix. I originally envisioned using Isabelle/HOL forthe 
omplete thesis, but abandoned that attempt after it be
ame 
lear that I would notbe able to 
omplete the formal proofs within the given time frame. A short summary ofthe main problems en
ountered while working with Isabelle/HOL is given in Se
tion 6 aswell.
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2 Basi
 NotionsAs this thesis uses multisets and the notation for these is not quite standardised yet, thelo
al version of it is given here.De�nition 2.1.1A multiset M is a fun
tion whi
h maps to natural numbers together with its domain.The domain will always stay impli
it in this thesis.An obje
t e is an element of the multiset, e ∈ M , i� M(e) > 0.The union of two multisets, M + N , is the pointwise addition, i.e. the multiset su
hthat (M + N)(e) = M(e) + N(e). Similarly, the di�eren
e of two multisets, M − N ,is the multiset su
h that (M − N)(e) = max(M(e) − N(e), 0). A multiset M is asubmultiset of another multiset N , M ≤ N , i� ∀x ∈ M. M(x) ≤ N(x).A set S 
an be understood within the domain of multisets by mapping all its elementsto 1, i.e. S(e) = 1 ⇔ e ∈ S ∧ S(e) = 0 ⇔ e /∈ S.The powermultiset of a set S, M(S), is the set 
ontaining all multisets whi
h only
ontain elements of S.Also, the notation P(S) will be used to denote the powerset of a set S.The following paragraphs about Petri nets are taken from [7℄, where this model hasalready been proven e�e
tive to des
ribe phenomena in asyn
hronous systems. The maindi�eren
e is that the present thesis allows transitions to 
arry more than one visible a
tion.The power of this additional possibility however is only used for intermediate 
onstru
tionsteps, and the main results hold also for nets where this is not allowed.De�nition 2.1.2Let A
t be a set of visible a
tions.A labelled net N (over A
t) is a tuple (SN , TN , F N , MN
0 , ℓN) where� SN is a set (of pla
es),� TN is a set (of transitions),� F N ⊆ SN × TN ∪ TN × SN (the �ow relation),� MN

0 ⊆ SN (the initial marking), and� ℓN : TN → P(A
t) (the labelling fun
tion).Petri nets are depi
ted by drawing the pla
es as 
ir
les, the transitions as boxes 
ontainingthe respe
tive label, and the �ow relation as arrows (ar
s) between them. When a Petrinet represents a 
on
urrent system, a global state of su
h a system is given as a marking,7



2 Basi
 Notionsa set of pla
es, the initial state being MN
0 . A marking is depi
ted by pla
ing a dot (token)in ea
h of its pla
es. The dynami
 behaviour of the represented system is de�ned bydes
ribing the possible moves between markings. A marking M may evolve into a marking

M ′ when a nonempty set of transitions G �res. In that 
ase, for ea
h ar
 (s, t) ∈ F Nleading to a transition t in G, a token moves along that ar
 from s to t. Naturally, this
an happen only if all these tokens are available in M in the �rst pla
e. These tokens are
onsumed by the �ring, but also new tokens are 
reated, namely one for every outgoingar
 of a transition in G. These end up in the pla
es at the end of those ar
s. A problemo

urs when as a result of �ring G multiple tokens end up in the same pla
e. In that 
ase
M ′ would not be a marking as de�ned above. This thesis only 
onsiders nets in whi
hthis never happens. Su
h nets are 
alled 1-safe. Unfortunately, in order to formally de�nethis 
lass of nets, the �ring rule must �rst be given without assuming 1-safety. Below thisis done by forbidding the �ring of sets of transitions when this might put multiple tokensin the same pla
e.De�nition 2.1.3Let N = (SN , TN , F N , MN

0 , ℓN) be a labelled net. Let M, M ′ ⊆ SN . The presetand postset of a net element x ∈ S ∪ T are denoted by •x := {y | (y, x) ∈ F} and
x• := {y | (x, y) ∈ F} respe
tively. These fun
tions are extended to sets in the usualmanner, i.e. •X := {y | y ∈ •x, x ∈ X}.A nonempty set of transitions G ⊆ TN , G 6= ∅, is 
alled a step from M to M ′, notation
M [G〉N M ′, i�� all transitions 
ontained in G are enabled, that is

∀t ∈ G. •t ⊆ M ∧ (M \ •t) ∩ t• = ∅ ,� all transitions of G are independent, that is not 
on�i
ting :
∀t, u ∈ G, t 6= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ , and� in M ′ all tokens have been removed from the prepla
es of G and new tokens havebeen inserted at the postpla
es of G:

M ′ = (M \ •G) ∪ G• .To simplify statements about possible behaviours of nets, the following de�nition intro-du
es some abbreviations.De�nition 2.1.4Let N = (SN , TN , F N , MN
0 , ℓN) be a labelled net. The labelling fun
tion ℓN shall beexpanded to sets by forming the multiset union of the results, i.e. ℓN(G) =

∑

t∈G ℓN(t).� −→N ⊆ P(S)×M(A
t)×P(S) is given by M
A
−→N M ′ ⇔ ∃G⊆TN. M [G〉N M ′ ∧

A = ℓN(G) 6= ∅8



� τ
−→N ⊆ P(S) × P(S) is de�ned by M

τ
−→N M ′ ⇔ ∃t ∈ T. ℓN (t) = ∅ ∧

M [{t}〉N M ′� =⇒N ⊆ P(S) × M(A
t)∗ × P(S) is de�ned by
M

A1A2···An======⇒N M ′ ⇔ M
τ

−→∗
N

A1−→N
τ

−→∗
N

A2−→N · · ·
An−→N

τ
−→∗

N M ′where τ
−→∗

N denotes the re�exive and transitive 
losure of τ
−→N .The following uses M

A
−→N for ∃M ′. M

A
−→N M ′, M X

A
−→N M ′ for ∄M ′. M

A
−→N M ′,and similar for the other two relations. Likewise M [G〉N abbreviates ∃M ′. M [G〉N M ′.A marking M is said to be rea
hable i� there is a σ ∈ M(A
t)∗ su
h that MN

0
σ

=⇒N M .The set of all rea
hable markings is denoted by [MN
0 〉.As stated before, only 1-safe nets are 
onsidered here. Formally, the restri
tion only allows
onta
t-free nets, where in every rea
hable marking M ∈ [MN

0 〉 for all t ∈ T with •t ⊆ M

(M \ •t) ∩ t• = ∅ .For su
h nets, De�nition 2.1.3 
ould just as well 
onsider a transition t to be enabled in
M i� •t ⊆ M , and two transitions to be independent when •t ∩ •u = ∅.Furthermore two additional restri
tions are imposed. Namely that SN and TN are �nite.Hen
eforth, net shall refer to a labelled net obeying the above restri
tions.In nets as just de�ned transitions are labelled with sets of a
tions drawn from a set A
t.This makes it possible to see these nets as models of rea
tive systems, that intera
t withtheir environment. The �ring of a transition t 
orresponds to the exe
ution of the a
tions
ℓN(t) by the system. If ℓN(t) 6= ∅, this �ring 
an be observed, but if ℓN(t) = ∅, t is aninternal or silent transition whose �ring 
annot be observed by the environment. Thesetransitions have traditionally 
arried the label τ instead of ∅, and this 
onvention will alsobe used in this thesis most of the time.In the following the term plain nets denotes nets where ℓN is inje
tive and maps onlyto singletons, i.e. essentially unlabelled nets. Similarly, the term plain τ -nets des
ribesnets where ℓN maps to singletons or τ and ℓN(t) = ℓN(u) 6= τ ⇒ t = u. This basi
allydes
ribes nets where every observable a
tion is produ
ed by a unique transition.The present thesis fo
uses mainly on implementations of plain nets, as many of the sub-tleties of varying equivalen
e notions 
an thus be avoided without negatively a�e
ting theresults about asyn
hrony.Some of the 
onstru
tions in this thesis will lead to very large nets. Sin
e giving themdire
tly in Petri net notation would 
ertainly not lead to a better understanding of theideas guiding them, these 
onstru
tions will work instead by 
onstru
ting nets out of
ommuni
ating �nite state ma
hines (FSMs). Sin
e �nite state ma
hines and �nite stateautomata are the same thing, these two terms will be used synonymously. 9



2 Basi
 NotionsDe�nition 2.1.5An a
tion signature Σ is a tuple (ΣI , ΣO, Στ ) where� ΣI is a set (of input a
tions),� ΣO is a set (of output a
tions),� Στ is a set (of internal a
tions), and� ΣI , ΣO and Στ are pairwise disjoint.In the following, Σ will also be used to mean ΣI ∪ ΣO ∪ Στ .De�nition 2.1.6A state ma
hine A is a tuple (ΣA, QA, qA
0 ,→A), where� ΣA is an a
tion signature,� QA is a set (of states),� qA

0 ∈ QA (the initial state), and� →A ⊆ QA × (P(ΣA
I ∪ ΣA

τ ) \ {∅}) × P(ΣA
O) × QA (the transition relation).Instead of (q, I, O, q′) ∈ →A the notion q

I;O
−→A q′ will be used to denote that a spe
i�
step 
an be performed. The state ma
hine A is �nite, i� QA is. A state q ∈ QA isrea
hable i� a 
hain of steps qA

0
I1;O1−−−→A

I2;O2−−−→A · · ·
In;On−−−→A q exists.This de�nition allows systems of multiple 
on
urrent state ma
hines to be des
ribed asa state ma
hine again. At the same time it allows su
h 
omposed systems to performa
tions in parallel, one of the main features of a truly distributed system. These featureswill be used in the de�nition of a parallel 
omposition operator on state ma
hines inSe
tion 3.Most FSMs 
onstru
ted later will have the ni
e property of only performing one inputa
tion at a time, giving rise to the following de�nition.De�nition 2.1.7A state ma
hine A is 
alled serial i� q

I;O
−→A q′ ⇒ |I| = 1.As the names of states of a state ma
hine do not in�uen
e the observable behaviour of astate ma
hine at all, it is advantageous to 
onsider two state ma
hines whi
h only di�erin these names as equivalent. This notion of equivalen
e is formalised as follows.De�nition 2.1.8Let A and A′ be two state ma
hines.

A and A′ are isomorphi
, A ≈ A′, if and only if ΣA = ΣA′ and there exists a bije
tion
ϕ : QA → QA′ su
h that

ϕ(qA
0 ) = qA′

0

q
I;O
−→A q′ ⇔ ϕ(q)

I;O
−→A′ ϕ(q′) .

10



3 Distributed SystemsAs already noted, many of today's 
omputer systems are distributed. To further analysethese systems formally, the essential aspe
ts of distributed systems need to be singled outand 
onverted into mathemati
al properties. Obviously not all of the properties shouldbe handled in that way, otherwise the mathemati
al models will be
ome 
onvoluted andnot any simpler than the original systems. Thus the formal models will be abstra
tionsof the real systems 
on
entrating on those aspe
ts whi
h seem relevant.The formal models in this thesis will in parti
ular ignore the possibility of hardwarefailures, the a
tual 
omputations exe
uted at the di�erent lo
ations, any knowledge aboutdurations both of 
omputations and of 
ommuni
ation and any physi
al properties of theinvolved nodes like dimensions or thermal properties.Instead the models 
on
entrate on the possibility of parallel a
tions, the asyn
hrony ofall 
ommuni
ation between nodes and on the 
ontrol �ow within ea
h of the nodes. Inparti
ular they also in
lude the possibility of message overtaking, i.e. that two messagesare re
eived in a di�erent order than they were sent. This phenomenon o

urs not in alldistributed systems, but is for example existent in the internet.In the following, the two system models introdu
ed in Se
tion 2 will be extended to adistributed setting. First, nets will be equipped with a notion of lo
ations and distributionin a pretty straightforward way, providing the intuition to 
onne
t the theoreti
al resultsto the problems of the real world. Then a parallel 
omposition operator on state ma
hineswill be de�ned, produ
ing state ma
hines whi
h are strongly related to distributed netsbut better suited for proofs about 
ompli
ated systems.3.1 Distributed Petri NetsTo de�ne a distributed net the easiest � and indeed obvious � way is to assume a set oflo
ations and to mount ea
h pla
e and transition of the net on some element thereof. Theintuition is that ea
h element is somehow implemented at the spe
i�ed lo
ation. After allelements have been pla
ed on one lo
ation or the other, some arrows will 
ross lo
ationborders. It is along these arrows that the di�erent lo
ations 
ommuni
ate. An exampleof a net with su
h lo
ation information atta
hed 
an be found in Figure 3.1.A signi�
ant 
ommuni
ation delay between lo
ations is assumed, whi
h 
an be representedexpli
itly by introdu
ing τ -labelled transitions along arrows 
rossing lo
ation borders, asdone in Figure 3.2. Note that due to this 
ommuni
ation delay between the �start drive�11
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end drive
start drive wait look

per
eive

sensor lo
ation
pu lo
ationuser lo
ation
allow drive

Figure 3.1: An example of a lo
ated net, modelling an example robot
τ

τ

τ

τ

τ

τ

τ

τ

end drive
start drive wait look

per
eive

sensor lo
ation
pu lo
ationuser lo
ation
allow drive
Figure 3.2: A lo
ated net with an expli
it representation of 
ommuni
ation delay

12



3.1 Distributed Petri Netstransition and its prepla
e to the right a premature de
ision is enfor
ed, leading to adeadlo
k if the token is sent the wrong way and the user never allows the exe
ution ofthe �allow drive� transition. A 
hara
terisation of subnets where problems of this kindare exhibited has been done in [8℄.As this thesis wants to show how to implement a net in a distributed manner without
hanging its behaviour, making a net distributed should not introdu
e new deadlo
ks.Hen
e the requirement is imposed that all prepla
es of a transition are 
o-lo
ated withthe transition to enable the syn
hronous removal of tokens. No spe
ial requirement isne
essary for 
onne
tions from transitions to postpla
es as all nets 
onsidered in this thesisare 1-safe. Thus the �ring of transitions 
annot be in�uen
ed by the presen
e of tokens onthe postpla
es. Furthermore instantaneous and delayed 
reation of tokens are equivalentunder nearly all equivalen
e relations whi
h abstra
t from τ -moves. Additionally, as asystem is usually distributed to in
rease performan
e by using multiple exe
ution units atthe same time, a se
ond requirement is imposed whi
h for
es transitions �ring in parallelto reside on di�erent lo
ations.As long as the two requirements are honoured, a system may be distributed in a varietyof ways. A spe
i�
 asso
iation of transitions and pla
es to lo
ations whi
h ful�ls theserequirements is 
alled a valid distribution. Some nets have multiple valid distributions, yeta single one su�
es to make a net distributed, as it 
ould be implemented in a distributedfashion.De�nition 3.1.1Let N = (SN , TN , F N , MN
0 , ℓN) be a net. Let Lo
 be a set of lo
ations.The net N is distributed i� there exists a fun
tion D : SN ∪ TN → Lo
 su
h that� s ∈ •t ⇒ D(s) = D(t) and� M1 ∈ [MN

0 〉 ∧ M1 [G〉N M2 ⇒ ∀t, u ∈ G, t 6= u. D(t) 6= D(u).One important 
lass of nets whi
h are distributed are those 
hara
terized in [22℄ as netsof sequential ma
hines. Sequential ma
hines are de�ned therein as Petri nets with twodi�erent kinds of pla
es. Some pla
es are states of the sequential ma
hine, the othersare 
ommuni
ation bu�ers whi
h the ma
hine reads and writes. As the name alreadysuggests, sequential ma
hines are only allowed to exe
ute a
tions in sequen
e, not inparallel. This is formalised by partitioning the pla
es of ea
h sequential ma
hine intobu�er (B) and state pla
es (S) and requiring that in ea
h rea
hable marking exa
tly onestate pla
e holds a token. Also, to make analysing networks of sequential ma
hines easier,one imposes that no step of a sequential ma
hine may perform both input and output.As long as the whole network is 1-safe however, every net 
an be transformed into anequivalent one whi
h ful�ls this 
ondition.De�nition 3.1.2Let N = (SN , TN , F N , MN
0 , ℓN) be a net. Let SN = B ∪ S with B ∩ S = ∅.

N is a sequential ma
hine i� 13
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do a do bqB BS

a bFigure 3.3: A trivial de
ision based upon available input � already not free 
hoi
e� ∀t ∈ TN . |•t ∩ S| = 1 ∧ |t• ∩ S| = 1 (single state invariant) and� |MN
0 ∩ S| = 1 (single state at beginning).The set S is 
alled the set of state pla
es, the set B the set of bu�er pla
es.A
tually [22℄ lists three other requirements. One whi
h guarantees rea
hability of allstates of a ma
hine, provided enough input is available in the bu�ers. This was ne
essaryas the paper tried to make all transitions in a system life. The requirement has beendropped here, as it was 
onsidered unne
essary and 
umbersome, espe
ially when dealingwith initialisation sequen
es ma
hines might want to perform only on
e. The se
onddropped requirement enfor
ed the free-
hoi
e property ( ∀s ∈ SN . |s•| > 1 ⇒ ∀t ∈

s•. |•t| = 1) within ea
h sequential 
omponent, e�e
tively prohibiting sequential ma
hinesto rea
t di�erently to di�erent inputs (
ompare Figure 3.3). While handy to prove livenessproperties, this requirement makes it impossible to transmit meaningful information toanother sequential 
omponent, as the re
eiver 
an not base any de
ision on re
eivedinput. See Se
tion 6.2 on why this requirement is only problemati
 under some impli
itassumptions made so far. The third dropped requirement demanded that transitionswould not perform input and output at the same time. A 1-safe system however 
an betransformed into a semanti
ally equivalent one whi
h ful�ls this requirement by splittingevery transition in two, 
onne
ted with a state pla
e.Sequential ma
hines 
an be 
oupled by sharing 
ommon bu�er pla
es. To remove thene
essity of lo
king algorithms on the lower level, ea
h bu�er is only allowed to be writ-ten by one ma
hine and read by one ma
hine. Hen
e ea
h bu�er provides a one-way
ommuni
ation link between a pair of ma
hines.De�nition 3.1.3Let {Ni | 1 ≤ i ≤ n} with Ni = (SNi, TNi, F Ni, MNi
0 , ℓNi) be a set of sequential ma-
hines. Let Si and Bi denote the respe
tive state pla
es and bu�er pla
es.The set is 
ompatible i�� i 6= j ⇒ Si ∩ Sj = ∅,� ∀p. p ∈ Bi ∧ p ∈ Bj ∧ p ∈ Bk ⇒ i = j ∨ j = k ∨ k = i,� i 6= j ⇒

•
TNi ∩

•
TNj = ∅, and� i 6= j ⇒ TNi

•
∩ TNj

•
= ∅.14



3.2 Asyn
hronous Finite State Ma
hinesDe�nition 3.1.4Let {Ni | 1 ≤ i ≤ n} be a 
ompatible set of sequential ma
hines.The parallel 
omposition of the ma
hines N0, N1, . . . , Nn, ∥

∥

∥

1≤i≤n
Ni is de�ned as the net

N‖ = (
⋃

1≤i≤n SNi,
⋃

1≤i≤n TNi,
⋃

1≤i≤n F Ni,
⋃

1≤i≤n MNi
0 ,

⋃

1≤i≤n ℓNi), where the labellingfun
tion is handled as a relation.Every network of sequential ma
hines has a valid distribution as follows. Ea
h sequentialma
hine is asso
iated with a new lo
ation to whi
h all transitions of that sequentialma
hine and all their prepla
es belong. As the sets of prepla
es of di�erent sequentialma
hines are guaranteed to be disjun
t, su
h a distribution always exists.3.2 Asyn
hronous Finite State Ma
hinesIt is the goal of this thesis to show how to implement arbitrary nets by distributed nets.Indeed the nets 
onstru
ted will be nets of 
oupled sequential ma
hines. However, the
onstru
tion shown later is rather lengthy. To in
rease readability and understanding, thesequential ma
hines are not represented by nets dire
tly, but as FSMs. To ensure 
lose
orresponden
e between the FSMs and the nets, the 
oupling between FSMs is de�nedhere rather unusually, with semanti
s mimi
king the net behaviour.When 
ombining multiple FSMs into one bigger system, outputs of one ma
hine and in-puts of the other together 
onstitute a 
ommuni
ation link between the two ma
hines.Su
h a 
ommuni
ation link will not be observable from the outside of the 
omposed sys-tem. All other individual a
tions however stay visible and 
onstitute the outside interfa
eof the new system. To remove the possibility of 
on�i
ts between the two ma
hines whendealing with the outside world, all resulting input and output a
tions of the new systemmust originate uniquely from one of the two ma
hines. To ease presentation, the addi-tional � and semanti
ally irrelevant � requirement is imposed that the internal a
tions areglobally unique.De�nition 3.2.1Two a
tion signatures Σ and Σ′ mat
h, i�� ΣI ∩ Σ′
I = ∅� ΣO ∩ Σ′
O = ∅� Στ ∩ Σ′ = ∅� Σ ∩ Σ′

τ = ∅To de�ne how the 
omposition of state ma
hines behaves, the properties of the 
ommu-ni
ation links need to be given. To avoid spe
ial 
ases, 
ommuni
ation links are modelledas a queue 
apable of holding any amount of messages the sender might ever produ
e.It will turn out later, however, that all state ma
hines a
tually 
onstru
ted in this thesiswill never send a message into a non-empty queue. 15
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{start}; {com1}

{com2}; {} {com2}; {}

{com1}; {com2}

{idle}; {beep}

a b
 d
efg

Figure 3.4: Two (serial) FSMs with mat
hing a
tion signatures, in parti
ular the signatureof the left FSM is Σ = ({start, com2}, {com1}, ∅) and the right FSM has thesignature Σ′ = ({com1}, {com2, beep}, {idle})

{start}; {}

{com1}; {}

{com2}; {}

{com2, idle};
{beep} {idle}; {beep}

(a, e, {})

(b, e, {com1})

(b, f, {com2})
(c, f, {})

(c, g, {})

(d, f, {})

(d, g, {})
(c, g, {com2})Figure 3.5: The 
omposition of the two FSMs of Figure 3.4, again an FSM (unrea
hablestates not shown), the signature is Σ = ({start}, {beep}, {idle, com1, com2})
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3.2 Asyn
hronous Finite State Ma
hinesDe�nition 3.2.2Let S = {Ai | 1 ≤ i ≤ n} be a set of state ma
hines with pairwise mat
hing a
tionsignatures, i.e. for all 1 ≤ i ≤ n, 1 ≤ j ≤ n with i 6= j, ΣAi and ΣAj mat
h.Let IS =
⋃

1≤i≤n ΣAi

I , OS =
⋃

1≤i≤n ΣAi

O and TS =
⋃

1≤i≤n ΣAi
τ .The asyn
hronous parallel 
omposition of A1, A2, . . . , An, ∥

∥

∥

1≤i≤n
Ai, is de�ned as thestate ma
hine A‖ = (ΣA‖ , QA‖ , q

A‖

0 ,→A‖) with� ΣA‖ = (IS \ OS, OS \ IS, TS ∪ (IS ∩ OS)) ,� QA‖ = ×1≤i≤n QAi × M(IS ∩ OS),� q
A‖

0 = (qA1

0 , . . . , qAn
0 , ∅),and, for I ⊆ Σ

A‖

I ∪Σ
A‖
τ and O ⊆ Σ

A‖

O , (q1, . . . , qn, M)
I;O
−→A‖

(q′1, . . . , q
′
n, M

′) if and onlyif � for all 1 ≤ i ≤ n either pi
Ii;Oi−−→Ai

qi ∧ Ii ∩ΣAi

I ∩Σ
A‖
τ ⊆ M or Ii = Oi = ∅∧pi = qi,� I =

⋃

1≤i≤n Ii 6= ∅ (input is 
omposed of sub
omponent inputs),� O =
⋃

1≤i≤n Oi ∩ Σ
A‖

O (output is 
omposed of visible sub
omponent outputs), and� M ′ = (M − I) + (
⋃

1≤i≤n Oi ∩ Σ
A‖
τ ) (message bu�er is 
orre
tly adjusted).Se
tion 6.2 
ontains a dis
ussion of the di�eren
es between this de�nition of state ma
hine
omposition other de�nitions found in the literature.Using a multiset for the message bu�ering requires potentially unbounded storage. How-ever, this fa
ility will not be used in the main 
onstru
tion of this thesis, whi
h neveroutputs a message if the same message is already travelling. The following de�nitionformalises this property.De�nition 3.2.3Let A1, A2, . . . , An be serial FSMs with pairwise mat
hing a
tion signatures. Let A‖be the asyn
hronous parallel 
omposition of all these FSMs.The 
omposition A‖ is said to be 1-safe, i� for all rea
hable states q ∈ QA‖ it holdsthat ∀x ∈ πn+1(q). πn+1(q)(x) = 1.When proving properties of 
omposed automata, it is advantageous to 
onsider onlythe interleaving of the 
omponent automata and derive results about parallel behaviourtherefrom. However, this is only possible if the parallel 
omposition behaves in a 
on�uentway, that is, di�erent s
heduling of the 
omponents does not lead to di�erent systemstates. Indeed the 
omposition de�ned in De�nition 3.2.2 is 
on�uent. A weaker 
laimonly 
onsidering serial FSMs su�
es for all proofs later on, however.Lemma 3.2.1Let A1, A2, . . . , An be serial FSMs with pairwise mat
hing a
tion signatures. Let A‖be their asyn
hronous parallel 
omposition.Let I ⊆ Σ

A‖

I ∪ Σ
A‖
τ and O ⊆ Σ

A‖

O . 17



3 Distributed SystemsIf q
I;O
−→A‖

q′′ then either |I| = 1 or for all i ∈ I there exists some O′ ⊆ O and a q′ su
hthat q
{i};O′

−−−→A‖
q′

I\{i};O\O′

−−−−−−→A‖
q′′.Proof (Sket
h)See Isabelle/HOL for a formal version.The a
tion i must have originated from some 
omponent Ai. Taking O′ to be Oi fromDe�nition 3.2.2, the two steps are possible. �The parallel 
omposition of FSMs is asso
iative and 
ommutative up to isomorphism.Proposition 3.2.1Let A, A′ and A′′ be state ma
hines with pairwise mat
hing a
tion signatures.

A‖A′ ≈ A′‖A

A‖(A′‖A′′) ≈ A‖A′‖A′′

(A‖A′)‖A′′ ≈ A‖A′‖A′′Proof (Sket
h)See Isabelle/HOL for a formal version of 
ommutativity.Commutativity via
ϕ(q1, q2, M) = (q2, q1, M) .Asso
iativity via

ϕ(q1, (q2, q3, M1), M2) = (q1, q2, q3, M1 + M2)and
ϕ((q1, q2, M1), q3, M2) = (q1, q2, q3, M1 + M2)respe
tively. �
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4 Distributed Systems and Bran
hing Time4.1 Why It Should Not WorkThe intuition why distributed implementations of arbitrary systems are impossible underbran
hing-time semanti
s is easy to 
onvey using a simple example. Consider the situationin Figure 4.1. A team of two robots stands in front of two doors. The robots want to rea
hat least one barrel of oil, but are separated from the barrels by two doors, whi
h open and
lose. Clearly, if the two doors stay 
losed forever, the robots stand no 
han
e, hen
e therestri
tion is imposed that at ea
h point in time at least one door is open. As bran
hing-time semanti
s are 
onsidered, it is assumed that the doors may 
lose instantaneously atany point in time. Nonetheless there is a simple and robust proto
ol for the two robots tofollow: Drive forward until the barrel is rea
hed. As one door will be open at every pointin time, one robot is guaranteed to drive through. Even if only one door ever opens, thetwo robot team rea
hes one barrel.Compare now the situation in Figure 4.2 where the same two robots have been reused, buttheir batteries have been depleted from earlier usage and they 
annot move until they havereloaded their batteries from an external sour
e. Just su
h a sour
e has been provided inform of an external battery right in the middle of the robots, 
ontaining enough 
hargeto 
arry either robot to the respe
tive barrel, but not both of them. Thus this example
ontains a distributed system 
onsisting of two robots whi
h need to 
ommuni
ate aboutwhi
h one gets to load its battery and moves. On
e this has been de
ided, the bran
hing-time assumption strikes: Whenever the 
harge has been transferred to some robot, saythe upper one, the door in front of it 
loses. As the doors may move arbitrarily fast this
an happen before the robot has any 
han
e to move. Hen
e any forward movement bythe upper robot is inhibited. Even if the two robots suspe
t that the upper door will notopen and transfer the 
harge to the lower robot, the doors may swit
h status again andthe lower door stays 
losed from then on. Continuing in this manner, no progress is evermade.These 
onsiderations do not however ex
lude a randomised solution. As long as thebehaviour of the doors is not all-knowing and downright evil, the robots stand a fair
han
e: By transferring the 
harge randomly between the two robots and trying to moveevery so often (note that in this idealised example world, no energy is lost if a movewas unsu

essful), one robot will eventually manage to get past the respe
tive door. Asthe time until this strategy su

eeds is unknown a priori, bran
hing-time equivalen
esoften do dete
t a di�eren
e between this behaviour and the instantly su

essful attemptof Figure 4.1. If the equivalen
e in question does not, a randomised strategy, in
luding19
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hing Time

Figure 4.1: Two robots wanting to rea
h a barrel

Figure 4.2: The same situation as in Figure 4.1 but with depleted batteries
20



4.2 Why It Does Not Workan in�nitely improbable in�nite loop, is perfe
tly �ne.The equivalen
e notion used in the remainder of this se
tion does not allow su
h loops.It identi�es two systems if after the same observable behaviour, the two systems o�er thesame multisets of a
tions for exe
ution. As the systems 
annot enfor
e the exe
ution ofa
tions, but have to hope for the world to allow them, �o�er� is probably the best 
hoi
eof words here.De�nition 4.1.1Let N = (SN , TN , F N , MN
0 , ℓN) be a net, σ ∈ A
t∗ and X ⊆ M(A
t).

〈σ, X〉 is a step ready pair of N i�
∃M. MN

0
σ

=⇒N M ∧ M X
τ

−→N ∧ X = {A ∈ M(A
t) | M
A
−→N} .The set of all step ready pairs of N is denoted R(N). Two nets N and N ′ are said tobe step readiness equivalent, N ≈R N ′, i� R(N) = R(N ′).4.2 Why It Does Not WorkTaking the formal de�nition of �distributed� from Se
tion 2, it has already been proventhat some behaviours 
annot be implemented in a distributed way in [7℄. This se
tionwill give a short re
ounting of the reasoning used there.Unfortunately the intuitive example given at the beginning of this se
tion does not map tothe formal problem. The two robot system of Figure 4.2 
an be represented as depi
tedin Figure 4.3 using a net. Using the formal de�nition of distributed, one �nds thatthe system is already distributed, as the two transitions 
annot �re in parallel. As noparallelism between transitions is needed, 
o-lo
ating the two transitions would be a validimplementation. This would amount to 
onne
ting both robots to the external batteryat on
e, pla
ing them dire
tly in front of the doors, and then trying to move forward. Inthat implementation, on
e a robot dete
ts that it got past the door, it gets all the battery
harge and moves to the goal. Assuming that the short moment while a robots futilelydrives against a 
losed door 
onsumes only a negligible amount of energy, this solves theproblem.However, su
h an implementation is not feasible in the situation depi
ted in Figure 4.4.The three robots try to rea
h at least two barrels, again having to reload their batteriesfrom the two external batteries provided. For the sake of example the middle robot istwi
e as big as the other two, hen
e in need of twi
e the energy as well. As before, thedoors open and 
lose arbitrarily fast and unpredi
tably. The robots have two options torea
h their goal of fet
hing two barrels. Either the upper and lower robot ea
h grab onebattery, move through the respe
tive doors in front of them and rea
h one barrel ea
h, orthe larger robot in the middle grabs both batteries, moves through its door and rea
hesthe two barrels. 21
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move upper robotmove lower robotbattery disposal

Figure 4.3: An abstra
t model of the situation in Figure 4.2

Figure 4.4: Three exhausted robots work in a team to rea
h a total of two barrels
p

q

t

u

vFigure 4.5: A fully rea
hable visible pure M22



4.2 Why It Does Not WorkThis robot problem 
orresponds to the net in Figure 4.5. As t and v 
an potentiallyhappen in parallel they must not be 
o-lo
ated, hen
e at least one battery 
annot be
onne
ted to both neighbouring robots, giving rise to the same problems as before. In [7℄we found the stru
ture depi
ted in these �gures to be at the 
ore of the problem. Thestru
ture 
an be des
ribed formally as follows.De�nition 4.2.1Let N = (SN , TN , F N , MN
0 , ℓN) be a net. N has a fully rea
hable visible pure M i�

∃t, u, v ∈ TN . •t ∩ •u 6= ∅ ∧ •u ∩ •v 6= ∅ ∧ •t ∩ •v = ∅ ∧
ℓN(t) 6= ∅ ∧ ℓN(u) 6= ∅ ∧ ℓN (v) 6= ∅ ∧
∃M ∈ [MN

0 〉. •t ∪ •u ∪ •v ⊆ M .Clearly, a net 
ontaining a fully rea
hable visible pure M 
annot be distributed. Tryingto implement su
h a net in a distributed manner, one qui
kly �nds that a fully rea
hablevisible pure M gives rise to a parti
ular step ready pair.Proposition 4.2.1Let N = (SN , TN , F N , MN
0 , ℓN) be a plain net whi
h has a fully rea
hable visible pureM. There exists 〈σ, X〉 ∈ R(N) with

∃a, b, c ∈ A
t. a 6= c ∧ {b} ∈ X ∧ {a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X .ProofSee [7℄. �In order to implement a net exhibiting su
h a step ready pair, one needs at least threetransitions exe
uting the three di�erent a
tions a, b, and c. As the set X des
ribes thepossible sets of a
tions after a 
ertain marking M has been rea
hed, all three transitionsmust be enabled in the same marking M . Furthermore the transitions exe
uting a and
c 
an happen in parallel and hen
e 
annot share a prepla
e due to De�nition 3.1.1. Thetransitions exe
uting a and b 
annot exe
ute together, so some shared prepla
e must exist.The same holds for the pair of b and c. The transition and pla
e stru
ture just des
ribedsounds familiar. Indeed the transitions exe
uting a, b, and c are guaranteed to form afully rea
hable visible pure M.Proposition 4.2.2Let N = (SN , TN , F N , MN

0 , ℓN) be a net su
h that there exists 〈σ, X〉 ∈ R(N) with
∃a, b, c ∈ A
t. a 6= c ∧ {b} ∈ X ∧ {a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X. Then N has afully rea
hable visible pure M.ProofSee [7℄. �23



4 Distributed Systems and Bran
hing TimeFrom these propositions, it follows that no distributed system 
an exhibiting the same be-haviour as the system of Figure 4.5 up to step readiness equivalen
e. Hen
e not all systembehaviours 
an be implemented in a distributed fashion if step readiness equivalen
e isused to 
ompare systems. This result depends on two properties of step readiness equiv-alen
e whi
h are not ne
essary for bran
hing-time equivalen
es in general. Step readinessequivalen
e does not allow the implementation to use divergen
e, hen
e a randomisedimplementation is ruled out. Furthermore step readiness equivalen
e respe
ts parallelism.Otherwise the system 
ould be stripped of all its parallelism by introdu
ing a new pla
e
onne
ted to all transitions by a loop. After all parallelism has been removed the triv-ial distribution, 
o-lo
ating all elements is allowed by De�nition 3.1.1. Apart from thathowever, step readiness equivalen
e is quite a 
oarse bran
hing-time equivalen
e, hen
ethe impossibility of implementing fully rea
hable visible pure Ms should hold for mostbran
hing-time equivalen
es.
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5 Distributed Systems and Linear Time5.1 Why It Should WorkAs daily progress in design and deployment of distributed systems shows, there must besome way for distributed systems to do useful work in the real world. So either thereexists no real world demand for the behaviours identi�ed as problemati
 in the previousse
tion, or the bran
hing-time assumption is not always warranted.It is indeed the se
ond possibility as a short example demonstrates. Consider a web shopwhi
h sells small four wheeled robots to 
omputer s
ientists. At some point a s
ientist hasde
ided to buy a robot. Then the web shop software and some software of the s
ientist'sbank will 
ommuni
ate to ensure prompt payment. The system 
onsisting of these twosoftware agents has basi
ally two options. Either both agree that the money shall betransferred and the robot shall be sent. Or they agree on not performing the transa
tion,usually due to insu�
ien
y of either robots or, more likely, money. They 
omprise adistributed system and 
an only 
ommuni
ate asyn
hronously. However no bran
hing-time problems 
an arise. The s
ientist, after having triggered the �buy� button, is simplynot o�ered any means to 
ommuni
ate a possible 
hange of mind to the web shop software,and the bank software will blissfully ignore possible 
on
urrent withdrawals and produ
eoverdraft. Thus while the 
ommuni
ation between web shop and bank is in progress,the environment 
annot 
hange in ways whi
h will make the exe
ution of either optionimpossible.Hen
e this se
tions 
onsiders linear-time semanti
s. The system is assumed to be fastin 
omparison to the world and 
an �rst measure all relevant aspe
t of the world andtherefrom infer whi
h a
tions will be possible later. Returning to the example from theearlier se
tion, 
onsider again the robots in Figure 4.2. If the doors are slow in 
omparisonto the robots' thoughts, the solution is fairly straightforward. Ea
h robots monitors thestatus of the door in front of it. On
e a door opens, the 
harge is transferred to therobot standing in front of it. The robot subsequently moves before the door has 
losedagain, thus solving the problem. Ignoring the expli
it door monitoring step, this 
an bemodelled abstra
tly by assuming that every a
tion the system makes is indeed possible,as otherwise the system would not have 
hosen to exe
ute that a
tion in the �rst pla
e.Note that this �
orre
tness� of 
hoi
es is not expli
itly represented in the formal modelsunder 
onsideration. Rather, the di�eren
e is in the equivalen
e relation used for 
om-paring two systems. Earlier two systems were only equivalent if at ea
h indistinguishablepoint of exe
ution they o�ered the same set of a
tions to the world, i.e. would rea
t the25



5 Distributed Systems and Linear Timesame to any states of the world. Now however, two systems are already equivalent ifboth o�er the same set of possible exe
ution sequen
es. As both systems are assumedintelligent enough to make the right 
hoi
es every time, they would make the same 
hoi
esin the same situation and hen
e exhibit the same behaviour as well.Also, the equivalen
e relation will dis
ern live- and deadlo
ks of the implementation, inparti
ular sin
e distributed systems have a proven tenden
y to exhibit them. To provethat the 
onstru
tion given later does not introdu
e new live- or deadlo
ks, an equivalen
ewhi
h noti
es those is ne
essary. Finally, the equivalen
e notion will dis
ern di�eren
esin parallelism, i.e. two systems of whi
h only one 
an do two parti
ular a
tions in parallelare di�erent. This requirement helps dis
ern systems of di�erent performan
e.De�nition 5.1.1Let N = (SN , TN , F N , MN
0 , ℓN) be a net, σ ∈ M(A
t)∗ and 0, δ /∈ A
t.

σ is an in
omplete step tra
e of N i�
∃M ⊆ SN . MN

0
σ

=⇒N M .

σ0 is a 
ompleted step tra
e of of N i�
∃M ⊆ SN . MN

0
σ

=⇒N M ∧ M X
τ

−→N ∧ ∄A. M
A
−→N .

σδ is a diverging step tra
e of N i�
∃M ⊆ SN . MN

0
σ

=⇒N M ∧ M
τ

−→N
τ

−→N
τ

−→N · · · .The set of all in
omplete, 
ompleted, and diverging step tra
es of N is denotedCST(N). Two nets N and N ′ are said to be 
ompleted step tra
e equivalent, i�CST(N) = CST(N ′).Completed step tra
e equivalen
e is a straightforward extension of the well known 
om-pleted tra
e equivalen
e. In parti
ular, it adds the ability to dete
t parallelism but doesnot dis
ern di�erent 
ausal stru
tures. Like 
ompleted tra
e equivalen
e it does not de-te
t deadlo
ks in one 
omponent of a system, as long as some a
tivity 
an 
ontinue. Alsosimilarly, it does not imply any fairness or justness 
onditions. It dete
ts livelo
ks evenif they are 
ompletely independent of other a
tivities in the system, however. Also, thisequivalen
e mirrors my intuition that if a system 
an perform a
tivities in parallel, it doesnot need to perform them in parallel every time, but will do so often enough to make theperforman
e improvement signi�
ant.After having de�ned two systems to be equivalent as per De�nition 5.1.1, the remainingtask is to give an algorithm whi
h, given an arbitrary net, 
onstru
ts an equivalent dis-tributed version of it. The main problem it solves is how to make a 
oherent 
hoi
e ofa
tions in a set of partly parallel, partly 
on�i
ting transitions. In 
ontrast to the resultsin Se
tion 4, this 
hoi
e 
an be made arbitrary early, in parti
ular without a
tually �ring26



5.2 How It Does Workany of the transitions. Why is this so? Be
ause it is assumed that all relevant informationabout the world is already known to make the 
orre
t 
hoi
e. Hen
e the transitions inquestion will �rst rea
h a 
onsensus about whi
h ones �re without exhibiting any externalbehaviour and then exe
ute the preplanned set of transitions later. Details of how thatworks are given below.5.2 How It Does WorkThis se
tion 
ontains the main results of this thesis and gives a 
onstru
tive proof of theexisten
e of a distributed implementation for every behaviour representable by a plainnet up to 
ompleted step tra
e equivalen
e.The proof will start at an arbitrary plain net, transforming it into a network of 
ommuni-
ating serial FSMs. Ea
h serial FSM will in turn be transformed into a net, and similarlythe 
oupling between the FSMs will also be transformed into net stru
tures. This slightlyindire
t approa
h allows the interesting problems of the distribution proto
ol to be de-s
ribed in the more 
ompa
t model of the FSMs. The se
ond mapping, from FSMs tonets, will be very dire
t, thereby 
arrying over the 
orre
tness of the proto
ol ba
k intothe domain of Petri nets.Before delving into the formal de�nitions, the intuition behind the proto
ol should beexplained. Assume a net N is given. First an arbitrary but �xed total order over allpla
es of N is de�ned. Then pla
es and transitions of N will be repla
ed, or implemented,by small subnets whi
h only 
ommuni
ate asyn
hronously.The implementation of a transition, say t, waits until all prepla
es of t have re
eived atoken. When it de
ides to �re, the implementation of t requests ex
lusive permission to usea token from (lo
ks) all its prepla
es in that global order. While the lo
k is not a
quired,no further a
tivity o

urs in the implementation of t. The global order guarantees thatdeadlo
ks do not o

ur. Assume the greatest (a

ording to the global order) lo
ked pla
eis p, then the transition holding the lo
k on pla
e p will only attempt to a
quire lo
kson pla
es greater than p. On
e the implementation of t holds lo
ks on all prepla
es of
t, it �res, noti�es the prepla
es of the token removal, and produ
es new tokens on allpostpla
es.The main 
ompli
ation is handling of failed lo
k attempts. When the implementation of atransition t was waiting to a
quire a lo
k on a pla
e p, yet another transition u su

eededin �ring and removed the token lo
ated on p, the implementation of t must abort thelo
k attempt, must release all 
urrently held lo
ks and resume waiting for all prepla
es tobe
ome marked. Livelo
ks do not o

ur, as whenever transition t fails to a
quire a lo
k,some other transition must have �red.The rest of the algorithm is basi
ally bookkeeping. 27



5 Distributed Systems and Linear TimeThe proto
ol between pla
es and transitions uses the following messages, whi
h all 
arryindi
es denoting the 
ommuni
ation partners:� notifyt
s (pla
e s has re
eived a token)� su

esst

s (pla
e s granted the lo
k to transition t)� looset
s (some transition di�erent from t lo
ked the pla
e s and removed the tokenfrom it)� tokent
s (pla
e s a
knowledges the removal of its token by the transition t)� lo
kt

s (transition t requests ex
lusive permission to use the token on pla
e s)� a
kUt
s (transition t a
knowledges the removal of the token on pla
e s, while no lo
kingrequest is pending from t to s)� a
kLt
s (transition t a
knowledges the removal of the token on pla
e s, after a lo
kingrequest has been sent to s)� unlo
kt

s (transition t releases the lo
k on pla
e s)� got
s (transition t removes the token from s)� newTokent

s (transition t produ
es a new token on s)First, the implementation of transitions will be given as an FSM. The implementationoperates in two phases. The �rst phase 
olle
ts information about whi
h prepla
es aremarked and starts to lo
k prepla
es on
e all are marked. The se
ond phase is the a
tual�ring, notifying all prepla
es about the removal of a token, then waiting until all prepla
eshave a
knowledged said removal. Finally new tokens are produ
ed on the postpla
es.The internal a
tions used are as follows:� internalLo
kt
l (transition t starts to lo
k pla
e l)� internalFiret (transition t begins �ring and starts to remove tokens from prepla
es)� internalDonet
l (transition t has �nished �ring and produ
es tokens on postpla
es)The states of the implementation mirror the two phases 
losely:� lo
kingt(L, l, T ) (The transition t tries to lo
k prepla
es. All prepla
es in T 
urrentlyhold a token, prepla
es in L have already been lo
ked, the lo
k on prepla
e l is
urrently being a
quired. If l = ⊥ no lo
k is 
urrently being a
quired.)� �ringt(T ) (The transition t removes tokens from the prepla
es. Tokens from theprepla
es in T have already arrived.)De�nition 5.2.1Let N = (SN , TN , F N , MN

0 , ℓN) be a plain net. Let ≤ be a total order over SN . Let
⊥ /∈ T be some new obje
t.For every transition t ∈ TN the transition simulating automaton of t is de�ned as anFSM At = (ΣAt , QAt , qAt

0 ,→At) with28



5.2 How It Does Work� ΣAt = (ΣAt

I , ΣAt

O , ΣAt
τ ) with� ΣAt

I = {notifyt
s, su

essts, looset

s, tokent
s | s ∈ •t},� ΣAt

O = {lo
kt
s, a
kUt

s, a
kLt
s, unlo
kt

s, got
s | s ∈ •t} ∪

{newTokent
s | s ∈ t•} ∪

{�ret},� ΣAt
τ = {internalLo
kt

l , internalDonet
l , internalFiret},� QAt = {lo
kingt(L, l, T ) | L, T ⊆ •t, l = ⊥∨ l ∈ •t} ∪ {�ringt(T ) | T ⊆ •t} ,� qAt

0 = lo
kingt(∅,⊥, ∅),and →At su
h that� lo
kingt(L, l, T )
{notifyt

s};∅−−−−−−→At
lo
kingt(L, l, T ∪ {s}) for ea
h s 6∈ T ,� lo
kingt(L, l, T )

{looset
s};{a
kUt

s}−−−−−−−−−→At
lo
kingt(L, l, T \ {s}) for s ∈ T \ L, s 6= l 6= ⊥,� lo
kingt(L,⊥, T )

{looset
s};{a
kUt

s}∪{unlo
kt
p | p∈L}−−−−−−−−−−−−−−−−−−−−→At

lo
kingt(∅,⊥, T \{s}) for s∈T \L,� lo
kingt(L, l, T )
{looset

l
};{a
kLt

l
}∪{unlo
kt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T \ {l}),� lo
kingt(L,⊥, •t)

{internalLo
kt
l
};{lo
kt

l
}

−−−−−−−−−−−−→At
lo
kingt(L, l, •t) for l = min(•t \ L),� lo
kingt(L, l, •t)

{su

esst
l
};∅

−−−−−−→At
lo
kingt(L ∪ {l},⊥, •t),� lo
kingt(L, l, T )

{su

esst
l
};{unlo
kt

p | p∈L∪{l}}−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T ) for ea
h T 6= •t,� lo
kingt(

•t,⊥, •t)
{internalFiret};{�ret}∪{got

s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At
�ringt(∅),� �ringt(T )

{tokent
s};∅−−−−−→At

�ringt(T ∪ {s}) for ea
h s 6∈ T , and� �ringt(
•t)

{internalDonet};{newTokent
s | s∈t•}−−−−−−−−−−−−−−−−−−−−−→At

lo
kingt(∅,⊥, ∅).The implementation of a pla
e goes through the following phases: First the pla
e isempty, and the implementation is not sending anything. Then a token arrives and theimplementation noti�es all posttransitions. Then the pla
e gets lo
ked by some posttran-sition, possibly queueing other lo
king requests until the lo
k holding transition su

eedsin �ring or releases the lo
k. If the lo
k is released another transition from the queueis immediately granted the lo
k. If the 
urrent lo
k holder su

eeds in �ring, all othertransitions are noti�ed of the token removal. Then the implementation enters its fourthphase waiting for all transitions to a
knowledge said removal, possibly 
learing pendinglo
k requests on the way.The internal a
tions used are as follows:� internalNotifys (pla
e s noti�es its posttransitions about the arrival of a token)� internalPassTokent
s (pla
e s sends its token to the transition t)The states of the implementation mirror the phases as follows:� emptys (Pla
e s is empty.)� prenotifys (Pla
e s holds a token but has not yet noti�ed its posttransitions.)� unlo
keds (Pla
e s holds a token, has noti�ed its posttransitions but is not yet lo
ked.)� lo
keds(t, L) (Pla
e s is lo
ked by transition t, the transitions in L also sent a lo
krequest but have not been granted the lo
k.) 29



5 Distributed Systems and Linear Time� waitings(t, L, W ) (The token on pla
e s needs to travel to the transition t, lo
k re-quests from all transitions in L have been re
eived, token removal a
knowledgementsfrom all transitions in W have not yet arrived.)De�nition 5.2.2Let N = (SN , TN , F N , MN
0 , ℓN) be a plain net.For every pla
e s ∈ SN the pla
e simulating automaton of s is de�ned as an FSM

As = (ΣAs, QAs, qAs
0 ,→As) with� ΣAs = (ΣAs

I , ΣAs

O , ΣAs
τ ) with� ΣAs

I = {lo
kt
s, a
kUt

s, a
kLt
s, unlo
kt

s, got
s | t ∈ s•} ∪ {newTokent

s | t ∈ •s} ,� ΣAs

O = {notifyt
s, su

esst

s, looset
s, tokent

s | t ∈ s•},� ΣAs
τ = {internalNotifys} ∪ {internalPassTokent

s | t ∈ s•} ,� QAs = {emptys, prenotifys, unlo
keds} ∪
{lo
keds(t, L) | t ∈ s•, L ⊆ s•, t 6∈ L} ∪
{waitings(t, L, W ) | t ∈ s•, W ⊆ s•, t 6∈ W, L ⊆ W} ,� qAs

0 =







prenotifys if s ∈ MN
0emptys otherwise ,and →As su
h that� emptys

{newTokent
s};∅−−−−−−−−→As

prenotifys,� prenotifys
{internalNotifys};{notifyt

s | t∈s•}−−−−−−−−−−−−−−−−−−−→As
unlo
keds,� unlo
keds

{lo
kt
s};{su

essts}−−−−−−−−−−→As

lo
keds(t, ∅),� lo
keds(t, L)
{lo
ku

s };∅−−−−−→As
lo
keds(t, L ∪ {u}) for ea
h u 6= t, u 6∈ L,� lo
keds(t, L)

{unlo
kt
s};{su

essus }−−−−−−−−−−−→As

lo
keds(u, L \ {u}) for ea
h u ∈ L,� lo
keds(t, ∅)
{unlo
kt

s};∅−−−−−−→As
unlo
keds,� lo
keds(t, L)

{got
s};{looseu

s | u∈s•,u 6=t}
−−−−−−−−−−−−−−−→As

waitings(t, L, s• \ {t}),� waitings(t, L, W )
{lo
ku

s };∅−−−−−→As
waitings(t, L ∪ {u}, W ) for ea
h u 6∈ L, u ∈ W ,� waitings(t, L, W )

{a
kLu
s };∅−−−−−→As

waitings(t, L \ {u}, W \ {u}) for ea
h u ∈ L,� waitings(t, L, W )
{a
kUu

s };∅−−−−−→As
waitings(t, L, W \ {u}) for ea
h u 6∈ L, u ∈ W , and� waitings(t, ∅, ∅)

{internalPassTokent
s};{tokent

s}−−−−−−−−−−−−−−−−−→As
emptys.De�nition 5.2.3Let N = (SN , TN , F N , MN

0 , ℓN) be a plain net.The FSM based asyn
hronous implementation of N , AN , is given by
AN =

∥

∥

∥

x∈SN∪T N

Ax .A proof that the 
onstru
tion from De�nition 5.2.1, De�nition 5.2.2, and De�nition 5.2.3is 
orre
t, would need a 
lear notion of 
orre
tness. Instead of rede�ning 
ompleted steptra
e equivalen
e for state ma
hines however, the following gives behavioural properties30



5.2 How It Does Workof the implementation whi
h will ultimately be used in Theorem 5.2.1 to show 
ompletedstep tra
e equivalen
e for the overall transformation.The �rst interesting property 
on
erns the rea
hable state spa
e of implementations oftransitions.Lemma 5.2.1Let N = (SN , TN , F N , MN
0 , ℓN) be a plain net, let ≤ be a total order over SN , and let

t ∈ TN . Let At be the transition simulating automaton of t.Let q be a rea
hable state of At.Then β(q) with
β(q) ⇔ q ∈



















lo
kingt(L, l, T )

∣

∣

∣

∣

∣

∣

∣

∣

∣

L ⊆ T ⊆ •t, ∀s ∈ L, p ∈ •t \ L. s < p,
L = ∅ ∨ l 6= ⊥ ∨ T = •t,
l = ⊥ ∨
(l ∈ T ∧ ∀s ∈ L, p ∈ •t \ (L ∪ {l}). s < l < p)



















∪

{�ringt(T ) | T ⊆ •t}ProofVia indu
tion over the steps ne
essary to rea
h q.
β(qAt

0 ) is trivial.Let q, I, O, and q′ su
h that q
I;O
−→At

q′ with β(q). The proof of β(q′) happens via 
asedistin
tion over the performed step.Case lo
kingt(L, l, T )
{notifyt

s};∅−−−−−−→At
lo
kingt(L, l, T ∪ {s}), s /∈ T : Only T 
hanged, and itbe
ame larger.Case lo
kingt(L, l, T )

{looset
s};{a
kUt

s}−−−−−−−−−→At
lo
kingt(L, l, T \ {s}), s ∈ T, s 6∈ L, s 6= l 6= ⊥:As only s was removed from T and s /∈ L still L ⊆ T ⊆ •t. Also l 6= ⊥ hen
e still

L 6= ∅ ∨ l 6= ⊥ ∨ T = •t. And s 6= l thus still l ∈ T .Case lo
kingt(L,⊥, T )
{looset

s};{a
kUt
s}∪{unlo
kt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T \ {s}), s ∈ T \ L:All 
onditions are trivial.Case lo
kingt(L, l, T )

{looset
l
};{a
kLt

l
}∪{unlo
kt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T \ {l}): All 
onditionsare trivial.Case lo
kingt(L,⊥, •t)

{internalLo
kt
l
};{lo
kt

l
}

−−−−−−−−−−−−→At
lo
kingt(L, l, •t), l = min(•t \ L): As the lwas 
hosen to be the minimum of •t \ L 
learly l ∈ •t and with the additional fa
t that

∀s ∈ L, p ∈ •t \ L. s < p also ∀s ∈ L, p ∈ •t \ (L ∪ {l}). s < l < p.Case lo
kingt(L, l, •t)
{su

esst

l
};∅

−−−−−−→At
lo
kingt(L ∪ {l},⊥, •t): From l ∈ •t follows that afterthe step L ∪ {l} ⊆ •t and from ∀s ∈ L, p ∈ •t \ (L ∪ {l}). s < l < p follows that

∀s ∈ L ∪ {l}, p ∈ •t \ (L ∪ {l}). s < p. The rest is trivial.Case lo
kingt(L, l, T )
{su

esst

l
};{unlo
kt

p | p∈L∪{l}}−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T ), T 6= •t: All 
onditionsare trivial. 31



5 Distributed Systems and Linear TimeCase lo
kingt(
•t,⊥, •t)

{internalFiret};{�ret}∪{got
s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At

�ringt(∅): Trivial.Case �ringt(T )
{tokent

s};∅−−−−−→At
�ringt(T ∪ {s}), s 6∈ T : Trivial.Case �ringt(

•t)
{internalDonet};{newTokent

s | s∈t•}−−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, ∅): All 
onditions againtrivial. �To shorten the following formulae somewhat, the tuples 
onstituting the 
omposed statema
hine states will be equipped with a ∼

∈ operator as follows. If q is a tuple of length
n + 1, x

∼
∈ q i� ∃i ≤ n. πi(q) = x ∨ x ∈ πn+1(q). Per 
onstru
tion x will always 
arrysome indi
es denoting an original transition or pla
e whi
h uniquely determine the onlyindex in q where it 
ould possibly o

ur. Also, keep in mind that the last element of thestate-tuple of the 
omposed FSMs is the message bu�er. Thus x

∼
∈ q basi
ally means �the
omponent denoted by the indi
es of x is in the state x� or �the message x is 
urrentlytravelling� depending on whether x is a message or a state.Another property of the transformation 
onsists of two mappings between the statesof the 
omposed state ma
hine and those of the original net. In both mappings thestates prenotifys, unlo
keds and lo
keds 
orrespond to full pla
es, whereas all other states
orrespond to empty pla
es, ex
ept for the duration of transition �rings. While in theoriginal net a transition �res with instantaneous e�e
ts, the �ring of a transition is alengthy pro
ess in the implementation. The �rst mapping f is 
oherent with the observablea
tions, i.e. 
hanges the marking mapped to at the same time as an observable a
tion isperformed and maps to a marking where all 
urrently �ring transitions have 
ompletely�red. The se
ond mapping f′ maps similarly but only 
onsiders transitions whi
h left their�ringt(T ) phase 
ompleted. While this mapping is not 
oherent with the observed a
tions,it helps with the proof of 
orre
tness. In parti
ular it 
arries the 
onta
t freeness of theoriginal net into the implementation in su
h a way that the 
onta
t freeness be
omesavailable as an argument at the point where a transition �nishes �ring.De�nition 5.2.4Let N be a plain net and let AN be the FSM based implementation of it.The fun
tion f : QAN → P(SN) is de�ned as

f(q) =















s ∈ SN

∣

∣

∣

∣

∣

∣

∣

∣

(∄t. got
s

∼
∈ q ∧ (prenotifys

∼
∈ q ∨ unlo
keds

∼
∈ q ∨

∃t, L. lo
keds(t, L)
∼
∈ q ∨ ∃t. newTokent

s

∼
∈ q)) ∨

∃t ∈ •s, T. �ringt(T )
∼
∈ q















.The fun
tion f′ : QAN → P(SN) is de�ned as
f′(q) =















s ∈ SN

∣

∣

∣

∣

∣

∣

∣

∣

prenotifys

∼
∈ q ∨ unlo
keds

∼
∈ q ∨

∃t, L. lo
keds(t, L)
∼
∈ q ∨ ∃t. newTokent

s

∼
∈ q ∨

∃t ∈ s•, T. �ringt(T )
∼
∈ q















.
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5.2 How It Does WorkSome states of the state ma
hine, although related through above fun
tions with statesof the net, are in fa
t never rea
hed. A predi
ate is needed whi
h de
ides whether anautomaton state is a
tually a valid state. It will be proven later that only valid states arerea
hable in the automaton.De�nition 5.2.5Let N be a plain net and let AN be the FSM based implementation of it.Let n = |TN | + |SN |.The predi
ate α ⊆ QAN is de�ned as α(q) i�(A.a) f(q) ∈ [MN
0 〉,(A.b) f′(q) ∈ [MN
0 〉,(B) ∀x. πn+1(q)(x) ≤ 1,(C.s) notifyt

s

∼
∈ q ⇒ unlo
keds

∼
∈ q ∨

∃u, L. lo
keds(u, L)
∼
∈ q ∧ u 6= t ∧ t /∈ L ∨

∃u, L, W. waitings(u, L, W )
∼
∈ q ∧ u 6= t ∧ t ∈ W ∧ t /∈ L,(C.t) notifyt

s

∼
∈ q ⇒ ∃L, l, T. lo
kingt(L, l, T )

∼
∈ q ∧ s /∈ T,(C.e) notifyt

s

∼
∈ q ⇒ su

essts 6∼∈ q ∧ tokent

s 6
∼
∈ q ∧ lo
kt

s 6
∼
∈ q ∧ a
kUt

s 6
∼
∈ q ∧a
kLt

s 6
∼
∈ q ∧ unlo
kt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(D.s) su

esst

s

∼
∈ q ⇒ ∃L. lo
keds(t, L)

∼
∈ q,(D.t) su

esst

s

∼
∈ q ⇒ ∃L, T. lo
kingt(L, s, T )

∼
∈ q,(D.e) su

esst

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧ lo
kt

s 6
∼
∈ q ∧ a
kUt

s 6
∼
∈ q ∧a
kLt

s 6
∼
∈ q ∧ unlo
kt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(E.s) looset

s

∼
∈ q ⇒ ∃u, L, W. waitings(u, L, W )

∼
∈ q ∧ u 6= t ∧ t ∈ W,(E.t) looset

s

∼
∈ q ⇒ ∃L, l, T. lo
kingt(L, l, T )

∼
∈ q ∧ s ∈ T ∧ s /∈ L ∨notifyt

s

∼
∈ q,(E.e) looset

s

∼
∈ q ⇒ su

esst

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧ a
kUt

s 6
∼
∈ q ∧a
kLt

s 6
∼
∈ q ∧ unlo
kt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(F.s) tokent

s

∼
∈ q ⇒ emptys

∼
∈ q,(F.t) tokent

s

∼
∈ q ⇒ ∃T. �ringt(T )

∼
∈ q ∧ s /∈ T,(F.e) tokent

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ su

essts 6∼∈ q ∧ looset

s 6
∼
∈ q ∧ lo
kt

s 6
∼
∈ q ∧ a
kUt

s 6
∼
∈ q ∧a
kLt

s 6
∼
∈ q ∧ unlo
kt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(G.s) lo
kt

s

∼
∈ q ⇒ unlo
keds

∼
∈ q ∨

∃u, L. lo
keds(u, L)
∼
∈ q ∧ u 6= t ∧ t /∈ L ∨

∃L. lo
keds(t, L)
∼
∈ q ∧ unlo
kt

s

∼
∈ q ∨

∃u, L, W. waitings(u, L, W )
∼
∈ q ∧ u 6= t ∧ t ∈ W ∧ t /∈ L,(G.t) lo
kt

s

∼
∈ q ⇒ ∃L, T. lo
kingt(L, s, T )

∼
∈ q ∨a
kLt

s

∼
∈ q, 33



5 Distributed Systems and Linear Time(G.e) lo
kt
s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ su

esst

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧a
kUt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(H.s) a
kUt

s

∼
∈ q ⇒ ∃u, L, W. waitings(u, L, W )

∼
∈ q ∧ u 6= t ∧ t ∈ W ∧ t /∈ L,(H.t) a
kUt

s

∼
∈ q ⇒ ∃L, l, T. lo
kingt(L, l, T )

∼
∈ q ∧ s /∈ T,(H.e) a
kUt

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ su

essts 6∼∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧ lo
kt

s 6
∼
∈ q ∧a
kLt

s 6
∼
∈ q ∧ unlo
kt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(I.s) a
kLt

s

∼
∈ q ⇒ ∃u, L, W.waitings(u, L, W )

∼
∈ q ∧ u 6= t ∧ t∈W ∧ t ∈ L ∨

∃u, L, W.waitings(u, L, W )
∼
∈ q ∧ u 6= t ∧ t∈W ∧ t /∈ L ∧ lo
kt

s

∼
∈ q,(I.t) a
kLt

s

∼
∈ q ⇒ ∃L, l, T. lo
kingt(L, l, T )

∼
∈ q ∧ s /∈ T,(I.e) a
kLt

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ su

esst

s 6
∼
∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧a
kUt

s 6
∼
∈ q ∧ unlo
kt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(J.s) unlo
kt

s

∼
∈ q ⇒ ∃L. lo
keds(t, L)

∼
∈ q,(J.t) unlo
kt

s

∼
∈ q ⇒ ∃L, l, T. lo
kingt(L, l, T )

∼
∈ q ∧ s /∈ L ∧ l 6= s ∨lo
kt

s

∼
∈ q,(J.e) unlo
kt

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ su

essts 6∼∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧a
kUt

s 6
∼
∈ q ∧ a
kLt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(K.s) got

s

∼
∈ q ⇒ ∃L. lo
keds(t, L)

∼
∈ q,(K.t) got

s

∼
∈ q ⇒ ∃T. �ringt(T )

∼
∈ q ∧ s /∈ T,(K.e) got

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ su

esst

s 6
∼
∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧lo
kt

s 6
∼
∈ q ∧ a
kUt

s 6
∼
∈ q ∧ a
kLt

s 6
∼
∈ q ∧ unlo
kt

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(L.s) newTokent

s

∼
∈ q ⇒ emptys

∼
∈ q,(L.e) newTokent

s

∼
∈ q ⇒ ∄u, u 6= t. newTokenu

s

∼
∈ q,(M.a) lo
kingt(L, l, T )

∼
∈ q ⇒ ∀s ∈ T. unlo
keds

∼
∈ q ∨

∃u, L′. lo
keds(u, L′)
∼
∈ q ∨

∃u, L′, W. waitings(u, L′, W )
∼
∈ q,(M.b) lo
kingt(L, l, T )

∼
∈ q ⇒

∀s ∈ T \ (L ∪ {l}). unlo
keds

∼
∈ q ∨

∃u, L′. lo
keds(u, L′)
∼
∈ q ∧ u 6= t ∧ t /∈ L′ ∨

∃L′. lo
keds(t, L
′)

∼
∈ q ∧ unlo
kt

s

∼
∈ q ∨

∃u, L′, W. waitings(u, L′, W )
∼
∈ q ∧ u 6= t ∧ t ∈ W ∧ t /∈ L,(M.
) lo
kingt(L, l, T )

∼
∈ q ⇒ ∀s ∈ L∃L′. lo
keds(t, L

′)
∼
∈ q,(M.d) lo
kingt(L, l, T )

∼
∈ q ∧ l 6= ⊥ ⇒ ∃u, L′. lo
kedl(u, L′)

∼
∈ q ∧ t 6= u ∧ t ∈ L′ ∨lo
kt

l

∼
∈ q ∨su

esst

l

∼
∈ q ∨looset

l

∼
∈ q,34



5.2 How It Does Work(N.a) �ringt(T )
∼
∈ q ⇒ ∀s ∈ •t \ T. ∃L, W. waitings(t, L, W )

∼
∈ q ∨got

s

∼
∈ q ∨tokent

s

∼
∈ q,(N.b) �ringt(T )

∼
∈ q ⇒ ∀s ∈ T. emptys

∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(N.
) �ringt(T )

∼
∈ q ⇒ ∀s ∈ t• \ •t. emptys

∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(N.d1) �ringt(T )

∼
∈ q ⇒ ∀s ∈ t•. ∄u ∈ •s, u 6= t∃T ′. �ringu(T

′)
∼
∈ q,(N.d2) �ringt(T )

∼
∈ q ⇒ ∀s ∈ •t. ∄u ∈ s•, u 6= t∃T ′. �ringu(T

′)
∼
∈ q,(N.d3) �ringt(T )

∼
∈ q ⇒ ∀s ∈ t•. ∄u ∈ s•, u 6= t∃T ′. �ringu(T

′)
∼
∈ q,(O.a) waitings(t, L, W )

∼
∈ q ⇒ ∃T. �ringt(T )

∼
∈ q ∧ s /∈ T,(O.b) waitings(t, L, W )

∼
∈ q ⇒ ∀u ∈ s•\(W ∪ {t})∃L′, l, T. lo
kingu(L

′, l, T )
∼
∈ q ∧ s /∈T,(O.
) waitings(t, L, W )

∼
∈ q ⇒ ∀u ∈ W. looseu

s

∼
∈ q ∨a
kUu

s

∼
∈ q ∨a
kLu

s

∼
∈ q,(P.a) lo
keds(t, L)

∼
∈ q ⇒ ∀u ∈ L∃L′, T. lo
kingu(L

′, s, T )
∼
∈ q,(P.b) lo
keds(t, L)

∼
∈ q ⇒ ∀u ∈ s• \ L. ∃L′, l, T. lo
kingu(L

′, l, T )
∼
∈ q ∧ s ∈ T ∨notifyu

s

∼
∈ q ∨gou

s

∼
∈ q,(P.
) lo
keds(t, L)

∼
∈ q ⇒ ∃L′, l, T. lo
kingt(L

′, l, T )
∼
∈ q ∧ s ∈ L′ ∨su

esst

s

∼
∈ q ∨unlo
kt

s

∼
∈ q ∨got

s

∼
∈ q,(Q.a) prenotifys

∼
∈ q ⇒ ∀u ∈ s•∃L, l, T. lo
kingu(L, l, T )

∼
∈ q ∧ s /∈ T, and(R.a) unlo
keds

∼
∈ q ⇒ ∀u ∈ s•. ∃L, l, T. lo
kingu(L, l, T )

∼
∈ q ∧ s ∈ T ∨notifyu

s

∼
∈ q.The invariant α 
ould have been written more dense, but the presentation used hereemphasises some properties of the terms whi
h will be useful during the following proofs.First note that 
onditions (C.*) to (L.*), where the use of * means any 
hara
ter, alldepend on the presen
e of some message, whereas 
onditions (M.*) to (R.*) depend onstates.Furthermore, most terms of the invariant deal just with the 
ommuni
ation between atransition t and a pla
e s without taking any other elements into a

ount. Conditions(*.s) assert some properties of a pla
e, 
onditions (*.t) assert properties of transitions and
onditions (*.e) assert ex
lusiveness of messages.The behavioural relation between the implementation and the original net is as follows:Whenever the implementation produ
es an output of �ret, the original 
an �re the tran-sition t, and similarly for sets of transitions as well. 35



5 Distributed Systems and Linear TimeProposition 5.2.1Let N be a plain net and let AN be the FSM based implementation of it.(i) f(qAN
0 ) = MN

0 ∧ f′(qAN
0 ) = MN

0(ii) α(qAN
0 )(iii) If α(q) and q

I;∅
−→AN

q′ then f(q) = f(q′).(iv) If α(q), q
I;O
−→AN

q′, and O 6= ∅ then f(q) {t | �ret∈O}−−−−−−−→N f(q′).(v) If α(q) and q
I;O
−→AN

q′ then α(q′).Proof(i): No messages are travelling initially as per De�nition 3.2.2. From De�nition 5.2.1follows that initially no transition t is in the state �ringt(T ) for any T . Furthermorefrom De�nition 5.2.2 follows that every initially unmarked pla
e s is in state emptysand that every initially marked pla
e s is in state prenotifys. Thus f(qAN
0 ) = MN

0 and
f′(qAN

0 ) = MN
0 .(ii): (A.*) by (i), (B) � (L.e) by the already noted fa
t that initially no messages arepresent. Every transition t is per De�nition 5.2.1 initially in state lo
kingt(∅,⊥, ∅) thus

T = L = ∅ and l = ⊥ in (M.*) and all hold, as do (N.*). From De�nition 5.2.2 fol-lows that pla
es are initially either in state emptys or in state prenotifys. Hen
e (O.*),(P.*) and (R.*), whereas (Q.a) follows from the fa
t that every transition t is in statelo
kingt(∅,⊥, ∅).(iii): Due to Lemma 3.2.1 it su�
es to show that the 
ondition holds for singleton I. FromDe�nition 3.2.2 follows that ea
h singleton I must 
orrespond to a step of a 
omponentFSM. The proof 
ontinues via 
ase distin
tion over all su
h possible steps.Case lo
kingt(L, l, T )
{notifyt

s};∅−−−−−−→At
lo
kingt(L, l, T ∪ {s}), s /∈ T : The 
onsumption ofnotifyt

s didn't 
hange f, neither did the state 
hange of the transition.Case lo
kingt(L, l, T )
{looset

s};{a
kUt
s}−−−−−−−−−→At

lo
kingt(L, l, T \ {s}), s ∈ T, s 6∈ L, s 6= l 6= ⊥:The 
onsumption of looset
s didn't 
hange f, neither did the state 
hange of the transitionor the 
reation of a
kUt

s messages.Case lo
kingt(L,⊥, T )
{looset

s};{a
kUt
s}∪{unlo
kt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T \ {s}), s ∈ T \ L:The 
onsumption of looset

s didn't 
hange f, neither did the state 
hange of the transitionor the 
reation of the new messages.Case lo
kingt(L, l, T )
{looset

l
};{a
kLt

l
}∪{unlo
kt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T \ {l}): The 
on-sumption of looset

s didn't 
hange f, neither did the state 
hange of the transition orany of the produ
ed messages.Case lo
kingt(L,⊥, •t)
{internalLo
kt

l
};{lo
kt

l
}

−−−−−−−−−−−−→At
lo
kingt(L, l, •t), l = min(•t \ L): No messagewas 
onsumed, lo
kt

l messages don't a�e
t f and neither do the transition states.Case lo
kingt(L, l, •t)
{su

esst

l
};∅

−−−−−−→At
lo
kingt(L∪ {l},⊥, •t): Again, su

esstl messages don'ta�e
t f and neither do the lo
kingt(. . .) states.36



5.2 How It Does WorkCase lo
kingt(L, l, T )
{su

esst

l
};{unlo
kt

p | p∈L∪{l}}−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T ), T 6= •t: Basi
ally asabove.Case lo
kingt(

•t,⊥, •t)
{internalFiret};{�ret}∪{got

s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At
�ringt(∅): This step is not possibleas the �ret a
tion is not an input of any other 
omponent and is thus visible in the outsidestep, violating the assumption that the step has no observable output.Case �ringt(T )

{tokent
s};∅−−−−−→At

�ringt(T ∪ {s}), s 6∈ T : The tokent
s message does not a�e
t fand neither do the 
ontents of T , as long as the transition stays in a state of �ringt(. . .).Case �ringt(

•t)
{internalDonet};{newTokent

s | s∈t•}−−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, ∅): For all s ∈ t•, it might bethe 
ase that no transition u ∈ •s in state �ringu(. . .) exists any more, but a newTokent

smessage has been 
reated for exa
tly those pla
es. From α(q) (N.b), (N.
) and (K.s)follows that no gou
s messages are 
urrently travelling towards any postpla
es of t.Case emptys

{newTokent
s};∅−−−−−−−−→As

prenotifys, t ∈ •s: While the newTokent
s message has been
onsumed, the state of s 
hanged to prenotifys thus preserving f.Case prenotifys

{internalNotifys};{notifyt
s | t∈s•}−−−−−−−−−−−−−−−−−−−→As

unlo
keds: The pla
e s 
ontributes to fwhether it is in state prenotifys or in state unlo
keds. The messages produ
ed don'ta�e
t f.Case unlo
keds
{lo
kt

s};{su

essts}−−−−−−−−−−→As
lo
keds(t, ∅): The pla
e s 
ontributes to f whether it isin state unlo
keds or in some state lo
keds(. . .). The messages lo
kt

s and su

esst
s don'ta�e
t f.Case lo
keds(t, L)

{lo
ku
s };∅−−−−−→As

lo
keds(t, L ∪ {u}), u 6= t, u 6∈ L: As long as the pla
e sstays in some state lo
keds(. . .) it 
ontributes to f. The message 
onsumed doesn't a�e
t
f.Case lo
keds(t, L)

{unlo
kt
s};{su

essus }−−−−−−−−−−−→As

lo
keds(u, L \ {u}), u ∈ L: As long as the pla
e sstays in some state lo
keds(. . .) it 
ontributes to f. The messages unlo
kt
s and su

essu

sdon't a�e
t f.Case lo
keds(t, ∅)
{unlo
kt

s};∅−−−−−−→As
unlo
keds: The pla
e s 
ontributes to f whether it is instate lo
keds(t, ∅) or in unlo
keds. The unlo
kt

s message doesn't a�e
t f.Case lo
keds(t, L)
{got

s};{looseu
s | u∈s•,u 6=t}

−−−−−−−−−−−−−−−→As
waitings(t, L, s• \ {t}): The state of pla
e sdoes not 
ontribute to f after this step, but it did not before either, due to the presen
eof the got

s message.Case waitings(t, L, W )
{lo
ku

s };∅−−−−−→As
waitings(t, L∪{u}, W ), u 6∈ L, u ∈ W : The state of thepla
e does not 
ontribute to f in any state waitings(. . .), neither does the lo
ku

s message.Case waitings(t, L, W )
{a
kLu

s };∅−−−−−→As
waitings(t, L \ {u}, W \ {u}), u ∈ L: The state of thepla
e does not 
ontribute to f in any state waitings(. . .), neither does the a
kLu

s message.Case waitings(t, L, W )
{a
kUu

s };∅−−−−−→As
waitings(t, L, W \ {u}), u 6∈ L, u ∈ W : The stateof the pla
e does not 
ontribute to f in any state waitings(. . .), neither does the a
kUu

smessage. 37



5 Distributed Systems and Linear TimeCase waitings(t, ∅, ∅)
{internalPassTokent

s};{tokent
s}−−−−−−−−−−−−−−−−−→As

emptys: The state of the pla
e does not
ontribute to f, neither in state waitings(t, ∅) nor in state emptys. The message tokent
sdoes not 
hange f.(iv): As before, only singleton I need to be 
onsidered. From De�nition 3.2.2, De�ni-tion 5.2.1 and De�nition 5.2.2 follows that the only visible outputs are of the form �ret.Thus the only possible step is lo
kingt(

•t,⊥, •t)
{internalFiret};{�ret}∪{got

s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At
�ringt(∅).As N is assumed 
onta
t free, it su�
es to show that •t ⊆ f(q) and f(q′) = (f(q) \ •t)∪ t•.From α(q) (M.
) follows that every prepla
e s of t is in some state lo
keds(t, . . .). From(K.t) follows that no got

s message is travelling, as t is not in any state �ringt(. . .) in q.Thus every prepla
e of t is in f(q).For every prepla
e s of t one message got
s is produ
ed, e�e
tively removing s from f(q′)unless s is also a postpla
e of t, whi
h is now in state �ringt(∅). That s does not remainin f(q′) due to some 
on
urrently �ring transition u whi
h also has s in its postset followsfrom α(q) (M.
) (every prepla
e s of t is in a state lo
keds(t, . . .)), (N.
) (postpla
es p of

u whi
h are not in •u are in state emptyp), (N.b) and (N.a) (prepla
es p of u are eitherin state emptyp or in a state waitingp(. . .) or a gou
p or a tokenu

p message is travelling) and(F.s) and (K.s) (either message is in
ompatible with the fa
t that s is lo
ked to t).Thus f(q′) = (f(q) \ •t) ∪ t•.(v): (A.a) from (iii) and (iv).Some parts of (C.e) 
an be proven from the rest of the invariant. No su

esst
s 
an exist as(C.t) and (D.t). No tokent

s 
an exist as (C.t) and (F.t). No unlo
kt
s 
an exist as (C.s) and(J.s). No got

s 
an exist as (C.s) and (K.s). No newTokenu
s 
an exist as (C.s) and (L.s).Thus I will instead of (C.e) show notifyt

s

∼
∈ q ⇒ lo
kt

s 6
∼
∈ q ∧ a
kUt

s 6
∼
∈ q ∧ a
kLt

s 6
∼
∈ q.Similarly for (D.e) via the following dedu
tions. No notifyt

s 
an exist as (C.e). No looset
s
an exist as (D.s) and (E.s). No tokent

s 
an exist as (D.s) and (F.s). No a
kUt
s 
an existas (D.s) and (H.s). No a
kLt

s 
an exist as (D.s) and (I.s). No got
s 
an exist as (D.t)and (K.t). No newTokenu

s 
an exist as (D.s) and (L.s). Assume now that lo
kt
s exists.Then from (D.s) and (G.s) follows that also unlo
kt

s exists. Assume that unlo
kt
s exists.Then from (D.t) and (J.t) follows that also lo
kt

s exists. Thus I will instead of (D.e) showsu

essts ∼
∈ q ⇒ lo
kt

s 6
∼
∈ q ∨ unlo
kt

s 6
∼
∈ q.Repeating the same for (E.e). No su

essts 
an exist as (D.e). No tokent

s 
an exist as (E.s)and (F.s). No a
kUt
s 
an exist as (E.t), (C.e) and (H.t). No a
kLt

s 
an exist as (E.t), (C.e)and (I.t). No unlo
kt
s 
an exist as (E.s) and (J.s). No got

s 
an exist as (E.s) and (K.s).No newTokenu
s 
an exist as (E.s) and (L.s). Thus (E.e).Repeating the same for (F.e). No notifyt

s 
an exist as (C.e). No su

esst
s 
an exist as(D.e). No looset

s 
an exist as (E.e). No lo
kt
s 
an exist as (F.s) and (G.s). No a
kUt

s 
anexist as (F.s) and (H.s). No a
kLt
s 
an exist as (F.s) and (I.s). No unlo
kt

s 
an exist as(F.s) and (J.s). No got
s 
an exist as (F.s) and (K.s). Thus I will instead of (F.e) showtokent

s

∼
∈ q ⇒ ∄u. newTokenu

s

∼
∈ q.38



5.2 How It Does WorkRepeating the same for (G.e). No notifyt
s 
an exist as (C.e). No su

esst

s 
an exist as (D.e).No tokent
s 
an exist as (F.e). No got

s 
an exist as (G.t), (I.t), and (K.t). No newTokenu
s
an exist as (G.s) and (L.s). Thus I will instead of (G.e) show lo
kt

s

∼
∈ q ⇒ a
kUt

s 6
∼
∈ q.Repeating the same for (H.e). No notifyt

s 
an exist as (C.e). No su

esst
s 
an exist as (D.e).No looset

s 
an exist as (E.e). No tokent
s 
an exist as (F.e). No lo
kt

s 
an exist as (G.e). Nounlo
kt
s 
an exist as (H.s) and (J.s). No got

s 
an exist as (H.s) and (K.s). No newTokenu
s
an exist as (H.s) and (L.s). Thus I will instead of (H.e) show a
kUt

s

∼
∈ q ⇒ a
kLt

s 6
∼
∈ q.Repeating the same for (I.e). No notifyt

s 
an exist as (C.e). No su

esst
s 
an exist as (D.e).No looset

s 
an exist as (E.e). No tokent
s 
an exist as (F.e). No a
kUt

s 
an exist as (H.e).No unlo
kt
s 
an exist as (I.s) and (J.s). No got

s 
an exist as (I.s) and (K.s). No newTokenu
s
an exist as (I.s) and (L.s). Thus (I.e).Repeating the same for (J.e). No notifyt

s 
an exist as (C.e). No su

esst
s 
an exist as(D.e). No looset

s 
an exist as (E.e). No tokent
s 
an exist as (F.e). No a
kUt

s 
an exist as(H.e). No a
kLt
s 
an exist as (I.e). No got

s 
an exist as (J.t), (K.t), (G.t), and (I.t). NonewTokenu
s 
an exist as (J.s) and (L.s). Thus (J.e).Repeating the same for (K.e). No notifyt

s 
an exist as (C.e). No su

esst
s 
an exist as(D.e). No looset

s 
an exist as (E.e). No tokent
s 
an exist as (F.e). No lo
kt

s 
an exist as(G.e). No a
kUt
s 
an exist as (H.e). No a
kLt

s 
an exist as (I.e). No unlo
kt
s 
an exist as(J.e). No newTokenu

s 
an exist as (K.s) and (L.s). Thus (K.e).Due to Lemma 3.2.1 it su�
es to show that the other 
onditions holds for singleton
I. From De�nition 3.2.2 follows that ea
h singleton I must 
orrespond to a step of a
omponent FSM. The proof 
ontinues via 
ase distin
tion over all su
h possible steps.The attentive reader might suspe
t now that a 
ase distin
tion over many 
ases, ea
hproving quite a lot of invariant terms, is rather tedious. It is indeed quite a lot of work,so whoever �nds it too lengthy is suggested to skip the rest of this proof.While referring to the 
lauses of De�nition 5.2.5, the following uses (X) to denote therespe
tive 
lause of α(q) and (X)' to denote 
lauses from α(q′).Case lo
kingt(L, l, T )

{notifyt
s};∅−−−−−−→At

lo
kingt(L, l, T ∪ {s}), s /∈ T :Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as no messages are produ
ed. (*.s)'as no state of a pla
e implementation is modi�ed, no new message was generated, (G.s)'asserts the existen
e of an unlo
kt
s message, (I.s)' asserts the existen
e of a lo
kt

s message,and neither was 
onsumed. (*.e)' as no new messages have been produ
ed.(C.t)' the only value added to T is s and only one notifyt
s message existed in q as per(B). (D.t)' and (G.t)' with the two existing values L and T ∪ {s} and the fa
t that noa
kLu

p message was 
onsumed. (E.t)' as the only notifyt
p message 
onsumed has p = s, swas added to T and s /∈ L. (F.t)' from (F.t). (H.t)' from (C.e) as only s was added, andno a
kUt

s message 
an exist. (I.t)' with the same argument for a
kLt
s. (J.t)' as nothingrelevant 
hanged from (J.t). And (K.t)' from (K.t). 39



5 Distributed Systems and Linear Time(M.a)' and (M.b)' from (C.s), (M.
)' from the fa
t that L stayed un
hanged. (M.d)' asno relevant messages have been 
onsumed and l didn't 
hange. (N.*)' and (O.a)' as noterms therein have 
hanged. (O.b)' from (C.s) sin
e if s is in some state waitings(u, L, W )then t ∈ W and u in (O.b)' does not range over t. No terms in (O.
)' and (P.a)' have
hanged, and (P.b)' stays true as well, as while the notifyt
s message has been 
onsumed,

s was added to T . (P.
)' as no relevant messages have been 
onsumed and only T was
hanged. (Q.a)' from (C.s) and (R.a)' with the same argument as (P.b)'.Case lo
kingt(L, l, T )
{looset

s};{a
kUt
s}−−−−−−−−−→At

lo
kingt(L, l, T \ {s}), s ∈ T, s 6∈ L, s 6= l 6= ⊥:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' from (E.e).(C.s)' as no pla
e state was 
hanged. No notifyt
s message existed per s ∈ T and (C.t).Thus (C.t)' and (C.e)'.(D.s)' as no pla
e state was 
hanged. (D.t)' as only T was 
hanged. (D.e)' from (E.e).(E.s)' as no pla
e state was 
hanged. (E.t)' as only s was removed from T , L remainedequal, no se
ond looset

s message existed as per (B), and no notifyu
p message was 
onsumed.(E.e)' from (B).(F.s)' as no pla
e state was 
hanged. (F.t)' from (F.t). (F.e)' from (E.e).(G.s)' as no pla
e state was 
hanged. (G.t)' as only T was 
hanged and no a
kLu

p messagewas 
onsumed. (G.e)' as with s 6= l no lo
kt
s message 
an exists per (G.t) and (E.e).(H.s)' from (E.s) and (M.b). (H.t)' trivially from the performed step. (H.e)' from (E.e)whi
h enfor
es that no a
kLt

s message 
an exist.(I.s)' as no pla
e state was 
hanged and no lo
ku
p was 
onsumed. (I.t)' as something wasremoved from T .(J.s)' as no pla
e state was 
hanged. (J.t)' as only T was 
hanged and no lo
ku

p was
onsumed.(K.s)' as no pla
e state was 
hanged. (K.t)' from (K.t).(L.s)' as no pla
e state was modi�ed. (L.e)' as no newTokenu
p messages were produ
ed.Terms only improved for (M.a)', (M.b)', (M.
)', (N.*)', (O.a)', (O.b)', (P.a)', (P.
)', and(Q.a)'. (M.d)' as the 
onsumed looset

s message has s 6= l. (O.
)' as the looset
s was repla
edby the a
kUt

s message. Note that s is in a state waitings(. . .) from (E.s). Thus (P.b)' and(R.a)'.Case lo
kingt(L,⊥, T )
{looset

s};{a
kUt
s}∪{unlo
kt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T \ {s}), s ∈ T \ L:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as an earlier a
kUt

s message isex
luded per (E.e) and the unlo
kt
p are unproblemati
 as per (J.t), (G.t), and (I.t).(C.s)' as no pla
e state was 
hanged. (C.t)' as T be
ame smaller. As the only 
riti
almessage for (C.e)' is the a
kUt

s message, it su�
es that from (C.t) follows that no notifyt
smessage existed in q.40



5.2 How It Does WorkFrom (D.t) follows that no su

esst
p message 
an exist in q. Thus (D.*)'.(E.s)' as no pla
e state was 
hanged. (E.t)' as the only element removed from T was s.There existed only one looset

s message per (B) and that was 
onsumed.From (F.s) follows that no tokenu
s message existed before. Thus (F.*)'.(G.s)' as no pla
e state was 
hanged and no unlo
ku

r message was 
onsumed. Assume somelo
kt
r

∼
∈ q. Then per (G.t) there must also exist some a
kLt

r

∼
∈ q, whi
h was not 
onsumed.Thus (G.t)'. From (I.t), no su
h a
kLt

r message 
an exist for any s ∈ T however, hen
elo
kt
s 6

∼
∈ q and thus (G.e)'.(H.s)' from (E.s) and (M.b). (H.t)' trivially from the performed step. (H.e)' from (E.e)whi
h enfor
es that no a
kLt

s message 
an exist.(I.s)' as no pla
e state was 
hanged and no lo
ku
r was 
onsumed. (I.t)' as something wasremoved from T .(J.s)' as no pla
e state was 
hanged. (J.t)' as L be
ame smaller and no lo
ku

r was 
on-sumed.From (K.t) follows that no got
r message 
an exist. Thus (K.*)'. (L.s)' as no pla
e statewas modi�ed. (L.e)' as no newTokenu

r messages were produ
ed.Terms only improved for (M.a)', (M.
)', (N.*)', (O.a)', (O.b)', (P.a)', and (Q.a)'.(M.b)' from (M.
) and the newly produ
ed unlo
kt
p messages. (M.d)' as the only looseu

rmessage 
onsumed has r = s and u = t, but t is in state lo
kingt(∅,⊥, T \ {s}) after thestep. (O.
)' as the looset
s message was repla
ed by the newly produ
ed a
kUt

s message.Note that s is in a state waitings(. . .) from (E.s). Thus (P.b)'. (P.
)' with the newlyprodu
ed unlo
kt
p messages. (R.a)' with the same argument as (P.b)'.Case lo
kingt(L, l, T )

{looset
l
};{a
kLt

l
}∪{unlo
kt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T \ {l}):Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' from (E.e) and (J.t), (G.t), and(I.t).(C.s)' as no pla
e state was 
hanged. (C.t)' as T be
ame smaller. From (C.t) with theperformed step follows that no notifyt

r message existed for r = l. Thus (C.e)'.(D.s)' as no pla
e state was 
hanged. (D.t)' as only su

esstr messages with r = l arepossible from (D.t) but (E.e) and thus no su
h message exists. Thus also (D.e)'.(E.s)' as no pla
e state was 
hanged. (E.t)' as the only element removed from T was l.The only problemati
 message is thus looset
l whi
h was 
onsumed however and existedonly on
e as per (B). Also no notifyu

r message was 
onsumed.From (F.t) no messages tokent
r 
an exist. Thus (F.*)'.(G.s)' as no pla
e state was 
hanged and no unlo
ku

r message was 
onsumed. (G.t)' asfor a possible lo
kt
l

∼
∈ q there is a
kLt

l

∼
∈ q′ and for some lo
kt

r

∼
∈ q with r ∈ L there must41



5 Distributed Systems and Linear Timebe an a
kLt
r message already as per (G.t). Thus (G.t)'. (G.e)' as neither lo
ku

r nor a
kUu
rmessages have been produ
ed.(H.s)' as no pla
e state was 
hanged. (H.t)' as T be
ame smaller. (H.e)' as the only newa
kLu

r message has r = l and u = t and (E.e).(I.s)' as no pla
e state was 
hanged and no lo
ku
r was 
onsumed. (I.t)' as T be
ame smallerand l was spe
i�
ally removed. (J.s)' as no pla
e state was 
hanged. (J.t)' as no lo
ku

rmessage was 
onsumed and no pla
e equals ⊥ or is in the empty set.From (K.t) follows that no �ret
r message existed, thus (K.*)'. (L.s)' as no pla
e state wasmodi�ed. (L.e)' as no newTokenu

r messages were produ
ed.Terms only improved for (M.a)' (M.
)' (N.*)' (O.a)', (O.b)', and (Q.a)'. (M.b)' as for all
s ∈ L (M.
) implies that lo
keds(t, L

′)
∼
∈ q for some L′ and the step generated respe
tiveunlo
kt

s messages. (M.d)' as the only message 
onsumed was looset
l and in q′ the transition

t is in the state lo
kingt(∅,⊥, T \ {l}) whi
h is unproblemati
 for (M.d)'. (O.
)' as thelooset
l message was repla
ed by a
kLt

l . Per (P.a) t was only in one L of a lo
kedr(u, L)
∼
∈ q,namely with r = l. From (E.s) however, that state is no longer present. Thus (P.a)' andwith the fa
t that only l was removed from T also (P.b)'. (P.
)' with the newly produ
edunlo
kt

p messages. From (P.a), (E.s), and that only l was removed also (R.a)'.Case lo
kingt(L,⊥, •t)
{internalLo
kt

l
};{lo
kt

l
}

−−−−−−−−−−−−→At
lo
kingt(L, l, •t), l = min(•t \ L):Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' from (G.t) and (I.t).From (C.t) follows that notifyt

l 6
∼
∈ q. Thus (C.*)'. From (D.t) follows that no su

esstpmessage 
an exist in q. Thus (D.*)'.(E.s)' as no pla
e state was 
hanged. (E.t)' as no notifyu

p messages were 
onsumed andthe �rst and last 
omponents of the transition state didn't 
hange.From (F.t) no messages tokent
p 
an exist. Thus (F.*)'. With (H.t) for (H.*)'. With (I.t)for (I.*)'. With (K.t) for (K.*)'.The above argument with (G.t) and (I.t) works towards (G.*)' for all messages but thenewly produ
ed lo
kt

l . Still (G.s)' together with (M.b), (G.t)' from the step, (G.e)' fromthe fa
t that no a
kUt
l message exists per (H.t).(J.s)' as no pla
e state was 
hanged. Assume there existed some unlo
kt

p

∼
∈ q. If p 6= leverything stays well, if p = l then the appropriate lo
kt

p was produ
ed, thus (J.t)'.(L.s)' as no pla
e state was modi�ed. (L.e)' as no newTokenu
p messages were produ
ed.Terms only improved for (M.a)', (M.b)', (M.
)', (N.*)', (O.*)', (P.*)', (Q.*)' and (R.*)'.(M.d)' with the newly produ
ed lo
kt

l message.Case lo
kingt(L, l, •t)
{su

esst

l
};∅

−−−−−−→At
lo
kingt(L ∪ {l},⊥, •t):Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as no messages are produ
ed. From(C.t) follows that no notifyt

p message 
an exist. Thus (C.*)'.42



5.2 How It Does WorkFrom (B) and (D.t) follows that exa
tly one su

esst
p message 
an exist, whi
h has p = l.It was 
onsumed though, so (D.*)'.(E.s)' as no pla
e state was 
hanged. (E.t)' as no notifyu

p messages were 
onsumed, thelast 
omponent of the transition state didn't 
hange, and the only element added to Lwas l for whi
h (D.e) guarantees that no looset
l message exists.From (F.t) follows that no �ret

p message exists. Thus (F.*)'.From (G.t) and (I.t) follows that every lo
kt
p message must have p = l. By (D.e) no su
hmessage exists and (G.*)'.From (H.t) follows that no a
kUt

p message exists and (H.*)'. Using (I.t), (I.*)' followssimilarly.(J.s)' as no pla
e state was 
hanged. (J.t)' as the only element added to L was l.(K.*)' again via (K.t). (L.s)' as no pla
e state was modi�ed. (L.e)' as no newTokenu
pmessages were produ
ed.Terms only improved for (M.a)', (M.b)', (N.*)', (O.*)', (P.b)', (Q.a)', and (R.a)'.(M.
)' with (D.s). (M.d)' as the only message 
onsumed was su

esstl and in q′ thetransition t is in the state lo
kingt(L∪{l},⊥, •t) whi
h is unproblemati
 for (M.d)'. (P.a)'as from (D.s) follows that l is in a state lo
kedl(t, L

′) with t /∈ L′ per De�nition 5.2.2.(P.
)' as only the su

esst
l message was removed and l was added to L.Case lo
kingt(L, l, T )

{su

esst
l
};{unlo
kt

p | p∈L∪{l}}−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, T ), T 6= •t:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. Assume some unlo
kt

p message alreadyexisted with p = l or p ∈ L. If p = l there is a 
ontradi
tion with (D.e), hen
e p ∈ L. For
p ∈ L however (J.t), (G.t) and then (I.t) 
onstitute a 
ontradi
tion as well. So no su
hunlo
kt

p message existed and (B)'.(C.s)' as no pla
e state was modi�ed. (C.t)' as T remained equal. (C.e)' as no lo
ku
r ,a
kUu

r , or a
kLu
r messages have been produ
ed.From (D.t) and (B) follows that no further su

esst

r message existed. Thus (D.*)'.(E.s)' as no pla
e state was 
hanged. (E.t)' as no notifyu
r messages were 
onsumed andthe last 
omponent of the transition state didn't 
hange.From (F.t) follows that no �ret

r message exists. Thus (F.*)'. From (K.t) similarly (K.*)'.(G.s)' as no pla
e state was modi�ed and no unlo
ku
r message was 
onsumed. (G.t)' asfrom (D.e) no lo
kt

l existed and for all other lo
kt
r

∼
∈ q (G.t) guarantees that there is ana
kLt

r

∼
∈ q whi
h was not 
onsumed. (G.e)' as neither lo
ku

r nor a
kUu
r messages have beenprodu
ed.(H.s)' as no pla
e state was modi�ed. (H.t)' as T remained equal. (H.e)' as neither a
kUu

rnor a
kLu
r messages have been 
reated. 43



5 Distributed Systems and Linear Time(I.s)' as no pla
e state was modi�ed and no lo
ku
r have been 
onsumed. (I.t)' as T remainedequal.As argued for (B)' no unlo
kt

p messages existed before the step. Now however, unlo
kt
pmessages exist, one with p = l and the others with p ∈ L. For the one with p = l (J.s)'follows from (D.s). For those with p ∈ L (J.s)' from (M.
). (J.t)' from the performedstep.(L.s)' as no pla
e state was modi�ed. (L.e)' as no newTokenu

p messages were produ
ed.Terms only improved for (M.a)', (M.
)', (N.*)', (O.*)', (P.b)', (Q.a)', and (R.a)'.(M.b)' from (D.s), (M.
), and the newly produ
ed unlo
kt
p messages. (M.d)' as the onlymessage 
onsumed was su

esst

l and in q′ the transition t is in the state lo
kingt(∅,⊥, T )whi
h is unproblemati
 for (M.d)'.Assume a pla
e p existed in state lo
kedp(u, L) with t ∈ L. Then p = l from (P.a). Thenthere is a 
ontradi
tion with (D.s). Thus no su
h pla
e exists and (P.a)'. (P.
)' as thesu

esstl message was repla
ed by an unlo
kt
l message.Case lo
kingt(

•t,⊥, •t)
{internalFiret};{�ret}∪{got

s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At
�ringt(∅):Then α(q′) as follows: (A.b)' as all prepla
es s of t are 
urrently in a state lo
keds(t, L) forsome L per (M.
). Thus f′ didn't 
hange. The �ret message is an output of the 
omposedstate ma
hine and does not a�e
t (B)'. From (K.t) no got

p message existed before the step,thus (B)'.From (C.t) no notifyt
p message existed, thus (C.*)'. From (D.t) similarly (D.*)'. From(E.s) and (M.
) thus (E.*)'. From (F.t) thus (F.*)'. From (G.t) and (I.t) similarly (G.*)'.From (H.t) thus (H.*)'. From (I.t) thus (I.*)'. From (J.t), (G.t), and (I.t) thus (J.*)'.(K.s)' from (M.
). (K.t)' trivially from the performed step.(L.s)' as no pla
e state was modi�ed. (L.e)' as no newTokenu

p messages were produ
ed.Terms only improved for (M.*)', (O.a)', and (O.
)'.(N.a)' from the produ
ed got
s messages. (N.b)' as T is empty after the step.From (M.
) follows that every pla
e s in •t is in state lo
kings(t, L) with some L. From(K.t) no got

s message existed before the step.From (A.b) and De�nition 5.2.4 then •t ⊆ f′(q). As N was assumed to be 
onta
t free,then for every pla
e s in t• \ •t, s /∈ f′(q). Thus s must be in state emptys and nonewTokenu
s message exists. Thus (N.
)'.Also from (A.b) and De�nition 5.2.4, •t ⊆ f(q). As N was assumed to be 
onta
t free, thenfor every pla
e s in t• \ •t, s /∈ f(q). Thus there 
annot exist u ∈ •s with �ringu(T

′)
∼
∈ qfor some T ′. Hen
e (N.d1)'.44



5.2 How It Does WorkAssume some u 6= t with �ringu(U)
∼
∈ q for some U and p ∈ •t ∩ •u existed. Then per(M.
) and (N.b) p /∈ U . With (M.
), (N.a), and (K.s) then tokenu

p

∼
∈ q. But then (F.s)and (M.
) form a 
ontradi
tion. Thus no su
h u 
an exist and (N.d2)'.As already argued for (N.
)', for every s ∈ t• \ •t, s /∈ f′(q) and per De�nition 5.2.4 no

u ∈ s• with �ringu(. . .)
∼
∈ q 
an exist. For s ∈ •t the same arguments as for (N.d2)' 
anbe applied, again showing that no u ∈ s• with �ringu(. . .)

∼
∈ q exists. Thus no su
h uexists for any s ∈ t• and (N.d3)'.Assume there existed some pla
e p with waitingp(u, L, W )
∼
∈ q and t ∈ p• \ (W ∪ {u}).Then there would be a 
ontradi
tion between (O.b) and the initial state of the step. Thusno su
h pla
e exists and (O.b)'. Using (P.a) a similar argument shows (P.a)'.(P.b)' and (P.
)' with the produ
ed got

s messages. (Q.a)' and (R.a)' as all prepla
es p of
t are in a state lo
kedp(t, L) for some L per (M.
).Case �ringt(T )

{tokent
s};∅−−−−−→At

�ringt(T ∪ {s}), s 6∈ T :Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as no messages are produ
ed. Thusalso (*.e)'.From (C.t) no notifyt
p message existed, thus (C.*)'. Similarly (D.t) shows (D.*)'. (E.t)and (C.t) thus (E.*)'. (G.t) and (I.t) thus (G.*)'. (H.t) thus (H.*)'. (I.t) thus (I.*)'.(J.t), (G.t), and (I.t) thus (J.*)'.(F.s)' as no pla
e state was 
hanged. (F.t)' as the only pla
e added to T was s and via(B) no se
ond tokent

s message existed.(K.s)' as no pla
e state was 
hanged. (K.t)' as the only pla
e added to T was s and via(F.e) no got
s message existed.(L.s)' as no pla
e state was modi�ed. (L.e)' as no newTokenu

p messages were produ
ed.Terms only improved for (M.*)', (N.
)', (N.d1)', (N.d2)', (N.d3)', (O.b)', (O.
)', (P.*)',(Q,a)' and (R.a)'.(N.a)' as the only message 
onsumed was tokent
s and s was added to T . (N.b)' from (F.s)and (F.e). (O.a)' as the only pla
e added to T was s and (F.s) enfor
es that s is in stateemptys.Case �ringt(

•t)
{internalDonet};{newTokent

s | s∈t•}−−−−−−−−−−−−−−−−−−−−−→At
lo
kingt(∅,⊥, ∅):Then α(q′) as follows: From (A.b) and De�nition 5.2.4 follows that •t ⊆ f′(q′). As N wasassumed to be 
onta
t free, thus f′(q) [{t}〉N (f′(q) \ •t) ∪ t•. With the performed stepand (N.d2) follows that f′(q′) = (f′(q) \ •t) ∪ t•. Thus (A.b)'.For every s ∈ t• either s ∈ t• \ •t or s ∈ •t. Then (B)' from (N.b) and (N.
).From (C.t) no notifyt

p message existed, thus (C.s)' and (C.t)'. As neither notifyu
p , lo
ku

p ,a
kUu
p nor a
kLu

p messages have been produ
ed (C.e)'. 45



5 Distributed Systems and Linear TimeFrom (D.t) similarly (D.s)' and (D.t)'. As neither su

essu
p , lo
ku

p , nor unlo
ku
p messageshave been produ
ed (D.e)'.From (E.t) and (C.t) similarly (E.s)' and (E.t)'. (G.t) and (I.t) thus (G.s)' and (G.t)'.(G.e)' as neither lo
ku

p nor a
kUu
p messages have been produ
ed.(H.t) thus (H.s)' and (H.t)'. (H.e)' as neither a
kUu

p nor a
kLu
p messages have beenprodu
ed.(I.t) thus (I.s)' and (I.t)'. (J.t), (G.t) and (I.t) thus (J.s)' and (J.t)'. (K.t) thus (K.s)'and (K.t)'.(F.t) thus (F.s)' and (F.t)'. Assume tokenu

p

∼
∈ q. For u = t (F.t) is a 
ontradi
tion withthe performed step, thus u 6= t. For p ∈ t• there is a 
ontradi
tion with (F.t) and (N.d3).Thus (F.e)'.(L.s)' and (L.e)' from (N.b) and (N.
). (M.*)' as all three arguments of the new state areempty.Terms only improved for (N.a)', (N.d1)', (N.d2)', (N.d3)', (O.b)', (O.
)', (P.*)', (Q.a)'and (R.a)'.Now 
onsider (N.b)' and (N.
)', whi
h are problemati
 as new newTokent

s messages havebeen produ
ed. Take any s ∈ t•. From (N.d3) there exists no transition u 6= t with s ∈ •uand �ringu(. . .)
∼
∈ q. Thus (N.b)'. From (N.d1) there exists no transition u 6= t for whi
h�ringu(. . .)

∼
∈ q and s ∈ u•. Thus (N.
)'.From (N.b) follows that no prepla
e p of t 
an be in a state waitingp(t, L, W ) for any Land W . Thus (O.a)'.Case emptys

{newTokent
s};∅−−−−−−−−→As

prenotifys, t ∈ •s:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as no messages are produ
ed. Thusalso (*.e)'.From (C.s) follows that no notifyu
s messages 
ould have existed in q. Thus (C.*)'. Similarlyfrom (D.s) follows (D.*)'. From (E.s) follows (E.*)'.From (F.e) follows that no tokenu
s message existed. Hen
e (F.*)'.From (G.s) follows that no lo
ku
s message existed. Thus (G.*)'. From (H.s) similarly(H.*)'. (I.s) thus (I.*)'. (J.s) thus (J.*)'. (K.s) thus (K.*)'.(L.s)' as the only pla
e whi
h 
hanged state was s and no se
ond newTokenu

s existed,neither for u = t as per (B) nor for u 6= t per (L.e).Terms only improved for (M.*)', (N.a)', (N.d1)', (N.d2)', (N.d3)', (O.*)', (P.*)', and(R.a)'. (N.b)' and (N.
)' as for the only pla
e whi
h 
hanged state there existed anewTokent
s message.46



5.2 How It Does WorkTake a posttransition u of s. If u is in a state �ringu(U) then s ∈ U would lead to a
ontradi
tion with (N.b). Thus s /∈ U and with s ∈ •u then s ∈ •u \ U . Then from(N.a) follows that either a gou
s or a tokenu

s message exists. That leads to a 
ontradi
tionvia (K.e) and (F.e) respe
tively. If u is in a state lo
kingu(L, l, T ) then s ∈ T leadsto a 
ontradi
tion with (M.a). The only remaining possibility is that u is in a statelo
kingu(L, l, T ) with s /∈ T . Thus (Q.a)'.Case prenotifys
{internalNotifys};{notifyt

s | t∈s•}−−−−−−−−−−−−−−−−−−−→As
unlo
keds:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. From (C.s) follows that no notifyt

smessages existed yet, so (B)'.(C.s)' trivially from the performed step. (C.t)' from (Q.a). (C.e)' from (G.s), (H.s), and(I.s) whi
h respe
tively ensure that no lo
kt
s, no a
kUt

s, and no a
kLt
s messages exist.From (D.s) follows that no su

esst

s message exists, thus (D.*)'. Similarly from (E.s)follows (E.*)'. From (F.s) follows (F.*)'. (G.s) thus (G.*)'. (H.s) thus (H.*)'. (I.s) thus(I.*)'. (J.s) thus (J.*)'. (K.s) thus (K.*)'. (L.s) thus (L.*)'.Terms only improved for (M.*)', (N.*)', (O.*)', (P.*)', and (Q.a)'.(R.a)' from the produ
ed notifyt
s messages.Case unlo
keds

{lo
kt
s};{su

essts}−−−−−−−−−−→As

lo
keds(t, ∅):Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as from (G.e) no su

esst
s 
ouldhave existed.(C.s)' as the only transition u for whi
h a notifyu

s message would be problemati
 is t. Butper (G.e) no notifyt
s message exists. Thus also (C.e)'. (C.t)' as no state of a transitionwas 
hanged.From (D.s) no su

essu

s message existed. Thus (D.*)'. From (E.s) similarly (E.*)'. (F.s)thus (F.*)'.(G.s)' as the only transition u for whi
h a lo
ku
s message would be problemati
 is t. Butthe lo
kt

s message was 
onsumed and per (B) no se
ond one exists. Thus also (G.e)'.(G.t)' as no state of a transition was 
hanged and no a
kLu
p message was 
onsumed.From (H.s) no a
kUu

s message existed. Thus (H.*)'. (I.s) thus similarly (I.*)'. (J.s) thus(J.*)'. (K.s) thus (K.*)'. (L.s) thus (L.*)'.Terms only improved for (M.a)', (M.
)', (N.*)', (O.*)', (Q.a)', and (R.a)'.(M.b)' as the only problemati
 transitions 
ould be t, but from (G.t) and (I.s) followsthat t is in a state lo
kingt(L, l, T ) with l = s. (M.d)' as the 
onsumed lo
kt
s message hasbeen repla
ed by the su

esst

s message.(P.a)' from the performed step. (P.b)' from (R.a). (P.
)' with the produ
ed su

esstsmessage. 47



5 Distributed Systems and Linear TimeCase lo
keds(t, L)
{lo
ku

s };∅−−−−−→As
lo
keds(t, L ∪ {u}), u 6= t, u 6∈ L:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as no messages are produ
ed. Thusalso (*.e)'.(C.s)' as the only transition added to L was u and from (G.e) no notifyu

s message existed.(C.t)' as no state of a transition was 
hanged.(D.s)' with the new value L ∪ {u}. (D.t)' as no state of transition was 
hanged.From (E.s) follows that no loosev
s message existed. Thus (E.*)'. Similarly (F.*)' followsfrom (F.s).(G.s)' as the only transition v for whi
h a lo
kv

s message would be problemati
 is u. Butthe lo
ku
s message was 
onsumed and per (B) no se
ond one exists. (G.t)' as no state ofa transition was 
hanged and no a
kLu

p was 
onsumed.From (H.s) follows that no a
kUv
s message existed. Thus (H.*)'. Similarly (I.*)' followsfrom (I.s).(J.s)' with the new value L ∪ {u}. Assume a unlo
kv

s

∼
∈ q exists. The only problemati

ase for (J.t)' is v = u as no transition state was 
hanged and only lo
ku

s was 
onsumed.However no unlo
ku
s message exists as (J.s) and t 6= u from the performed step lead to a
ontradi
tion otherwise. Thus (J.t)'.(K.s)' with the new value L ∪ {u}. (K.t)' as no state of a transition was 
hanged.From (L.s) follows that no newTokenv

s message existed. Thus (L.*)'.Terms only improved for (M.a)', (M.
)', (N.*)', (O.*)', (P.b)', (P.
)', (Q.a)', and (R.a)'.(M.b)' as the only value added to L was u and from (G.t) and (I.s) follows that u is in astate lo
kingu(L, l, T ) with l = s. (M.d)' as the only 
onsumed lo
kv
s message has v = uand u was added to L.(P.a)' with the same argument as (M.b)'.Case lo
keds(t, L)

{unlo
kt
s};{su

essus }−−−−−−−−−−−→As

lo
keds(u, L \ {u}), u ∈ L:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as per (D.s) no su

essu
s message
ould have existed before.(C.s)' as something was removed from L. (C.t)' as no state of a transition was 
hanged.(C.e)' as no lo
kv

s , no a
kUv
s , and no a
kLv

s messages have been produ
ed.(D.s)' trivially from the performed step. (D.t)' from (P.a). No unlo
ku
s message 
ouldhave existed as (J.s). Thus (D.e)'.From (E.s) follows that no loosev

s message 
an exist. Thus (E.*)'. Similarly from (F.s)follows (F.*)'.Assume some lo
kv
s message exists in q. For v 6= t and v 6= u nothing relevant 
hangedin (G.s)'. For v = t the unlo
kt

s message was removed, but t /∈ L from De�nition 5.2.248



5.2 How It Does Workso (G.s)' as far as a possible lo
kt
s is 
on
erned. For v = u no lo
ku

s message 
ould haveexisted as (G.s) and u ∈ L. Thus (G.s)'.(G.t)' as no state of a transition was 
hanged and no a
kLu
p was 
onsumed. (G.e)' as noa
kUv

p message was 
reated.From (H.s) follows that no a
kUv
s message existed. Thus (H.*)'. The same argument with(I.s) shows (I.*)'.(J.s)' as the only problemati
 message 
ould be unlo
kt

s but it was 
onsumed and per (B)no se
ond one exists. (J.t)' as no state of a transition was 
hanged and no lo
kv
p messagewas 
onsumed.(K.s)' as the only problemati
 message 
ould be got

s but su
h a message does not existsas per (J.e). (K.t)' as no state of a transition was 
hanged.From (L.s) follows that no newTokenv
s message existed. Thus (L.*)'.Terms only improved for (M.a)', (N.*)', (O.*)', (P.a), (Q.a)', and (R.a)'.To show (M.b)', assume some transition v exists su
h that lo
kingv(L

′, l, T )
∼
∈ q and

s ∈ T \ (L′ ∪{l}). If v 6= t and v 6= u then nothing relevant 
hanged in (M.b)'. For v = uthere is a 
ontradi
tion with (M.b) as u ∈ L. For v = t (M.b)' holds as t /∈ L. Thus(M.b)'.The only transition problemati
 for (M.
)' is t, but from (J.t) either t is in a statelo
kingt(L, l, T ) with s /∈ L or lo
kt
s

∼
∈ q from whi
h via (G.t) follows lo
kingt(L, s, T )

∼
∈ qwhere also s /∈ L per Lemma 5.2.1 or there must be an a
kLt

s message whi
h is not possibleas per (I.s). Thus (M.
)'.(M.d)' as the removal of u from L is unproblemati
 with the newly produ
ed su

essu
smessage.(P.b)' from (P.a) as the only problemati
 transition is u whi
h was in L earlier. (P.
)' asthe unlo
kt

s message was 
onsumed but the �rst 
omponent of the state 
hanged to u forwhi
h (P.
)' holds with the newly produ
ed su

essu
s message.Case lo
keds(t, ∅)

{unlo
kt
s};∅−−−−−−→As

unlo
keds:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as no messages are produ
ed. Thusalso (*.e)'.(C.s)' from the performed step. (C.t)' as no state of a transition was 
hanged.(D.s)' as no su

essts message existed per (J.e) and no other su

essu
s message existed per(D.s). (D.t)' as no state of transition was 
hanged.From (E.s) follows that no loosev

s message 
an exist. Thus (E.*)'. Similarly from (F.s)follows (F.*)'.(G.s)' from the performed step. (G.t)' as no state of a transition was 
hanged and noa
kLu
p was 
onsumed. 49



5 Distributed Systems and Linear TimeFrom (H.s) follows that no a
kUv
s message existed. Thus (H.*)'. Using (I.s) follows (I.*)'similarly.(J.s)' as the only possible unlo
ku

s message has u = t. That message was 
onsumedhowever, and per (B) no se
ond one existed. (J.t)' as no state of a transition was 
hangedand no lo
kv
p was 
onsumed.(K.s)' as the only possible gou

s message has u = t. From (J.e) however, no su
h messageexisted. (K.t)' as no state of a transition was 
hanged.From (L.s) follows that no newTokenu
s message existed. Thus (L.*)'.Terms only improved for (M.a)', (M.b)', (M.d)', (N.*)', (O.*)', (P.a)', (P.b)' and (Q.a)'.The only transition problemati
 for (M.
)' is t, but from (J.t) either t is in a statelo
kingt(L, l, T ) with s /∈ L or lo
kt

s

∼
∈ q from whi
h via (G.t) follows lo
kingt(L, s, T )

∼
∈ qwhere also s /∈ L per Lemma 5.2.1 or there must be an a
kLt

s message whi
h is not possibleas per (I.s). Thus (M.
)'.(P.
)' as the only unlo
ku
p message 
onsumed has p = s and u = t and the new state of sis unproblemati
. (R.a)' from (P.b) as (J.e) ex
ludes a got

s message.Case lo
keds(t, L)
{got

s};{looseu
s | u∈s•,u 6=t}

−−−−−−−−−−−−−−−→As
waitings(t, L, s• \ {t}):Then α(q′) as follows: (A.b)' as f′ didn't 
hange sin
e got

s

∼
∈ q implies via (K.t) that�ringt(T )

∼
∈ q for some T . (B)' as (E.s) ensured that no loosev

s message existed before.To show (C.s)' assume that some notifyv
s message existed. Then from (C.s) follows that

v 6= t and v /∈ L. Thus v ∈ s• \ {t} and waitings(t, L, s• \ {t}) makes (C.s)' true for thatmessage. Thus (C.s)'. (C.t)' as no state of a transition was 
hanged. (C.e)' as no lo
kv
s ,no a
kUv

s , and no a
kLv
s messages have been produ
ed.(D.s)' as every message su

essvs must have v = t per (D.s) and su

essts is ex
luded by(K.e). (D.t)' as no state of a transition was 
hanged. (D.e)' as no lo
kv

s and no unlo
kv
smessages have been produ
ed.No loosev

s message 
ould have existed in q as per (E.s). For the newly 
reated messages(E.s)' follows from the performed step. (E.t)' follows from (P.a), (P.b) and (M.
) togetherwith the observation that every gov
s

∼
∈ q must have v = t per (K.s).From (F.s) follows that no tokenv

s message 
an exist. Thus (F.*)'.Assume some lo
kv
s message existed in q. For v 6= t the state waitings(t, L, s• \ {t}) makes(G.s)' true for that message. For v = t an unlo
kt

s message would need to exist, whi
h isnot the 
ase as per (K.e). Thus (G.s)'. (G.t)' as no state of a transition was 
hanged andno a
kLv
p has been 
onsumed. (G.e)' as no a
kUv

p message was 
reated.From (H.s) follows that no a
kUv
s message existed. Thus (H.*)'. Similarly (I.*)' followsfrom (I.s).50



5.2 How It Does WorkFrom (J.s) follows that every message unlo
kv
s has v = t. But unlo
kt

s 6
∼
∈ q from (K.e).Thus (J.s)'. (J.t)' as no state of a transition was 
hanged and no lo
kv

p was 
onsumed.From (K.s) follows that every message gov
s has v = t. But got

s was 
onsumed and nose
ond one existed as per (B). Thus (K.*)'.From (L.s) follows that no newTokenu
s message existed. Thus (L.*)'.Terms only improved for (M.a)', (N.b)', (N.
)', (N.d1)', (N.d2)', (N.d3)', (P.a)', (P.b)',(Q.a)', and (R.a)'.For (M.b)' assume some transition v with lo
kingv(L

′, l, T )
∼
∈ q and s ∈ T \ (L ∪ {l})exists. If v 6= t then v ∈ s• \ {t} and (M.b)' holds for v. If v = t then there would needto be an unlo
kt

s message whi
h is a 
ontradi
tion to (K.e). Thus (M.b)'.(M.
)' as the only problemati
 transition 
ould be t whi
h however is in state �ringt(T )for some T as per (K.t). (M.d)' with the newly produ
ed looseu
s messages.(N.a)' as the only gov

p message 
onsumed has p = s and v = t and s swit
hed its stateinto waitings(t, L, s• \ {t}).(O.a)' from (K.t). (O.b)' as s• \ ((s• \ {t}) ∪ {t}) = ∅. (O.
)' with the newly produ
edlooseu
s messages.(P.
)' as the only gov

p message 
onsumed has p = s but the new state of s is unproblemati
.Case waitings(t, L, W )
{lo
ku

s };∅−−−−−→As
waitings(t, L ∪ {u}, W ), u 6∈ L, u ∈ W :Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as no messages are produ
ed. Thusalso (*.e)'.(C.s)' as the only element added to L is u for whi
h no notifyu

s message exists as per(G.e). (C.t)' as no state of a transition was 
hanged.From (D.s) no su

essv
s message existed. Thus (D.*)'.(E.s)' as only L was 
hanged. (E.t)' as no notifyu

p messages were 
onsumed and no stateof a transition was 
hanged.From (F.s) follows that no tokenv
s message 
an exist. Thus (F.*)'.(G.s)' as the only element added to L is u, one lo
ku

s message was 
onsumed, no se
ondone exists as per (B), and no unlo
kv
p message was 
onsumed. (G.t)' as no state of atransition was 
hanged and no a
kLv

p was 
onsumed.(H.s)' as the only element added to L is u for whi
h no a
kUu
s message exists as per (G.e).(H.t)' as no state of a transition was 
hanged.(I.s)' as the fa
t that u was added to L makes up for the 
onsumed lo
ku

s message. (I.t)'as no state of a transition was 
hanged.From (J.s) follows that no message unlo
kv
s exists. Thus (J.*)'. Similarly from (K.s)follows (K.*)'. From (L.s) follows (L.*)'. 51



5 Distributed Systems and Linear TimeTerms only improved for (M.a)', (M.
)', (N.*)', (O.*)', (P.*)', (Q.a)', and (R.a)'.(M.b)' as the only element added to L is u for whi
h (G.t) and (I.t) guarantee thatlo
kingu(L
′, l, T )

∼
∈ q su
h that s /∈ T \ (L′ ∪ {l}). Regarding (M.d)', from (O.
) and

u ∈ W follows that a looseu
s , an a
kUu

s , or an a
kLu
s message exists. If looseu

s

∼
∈ q (M.d)',(G.e) ex
ludes the a
kUu

s message, and if an a
kLu
s message exists, (I.t) guarantees that uis in an unproblemati
 state lo
kingu(L

′, l, T ) for (M.d)' as s /∈ T and thus via Lemma 5.2.1
l 6= s. Thus (M.d)'.Case waitings(t, L, W )

{a
kLu
s };∅−−−−−→As

waitings(t, L \ {u}, W \ {u}), u ∈ L:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as no messages are produ
ed. Thusalso (*.e)'.(C.s)' as the only element removed from W is u for whi
h (I.e) guarantees that no notifyu
smessage exists. (C.t)' as no state of a transition was 
hanged.From (D.s) no su

essv

s message existed. Thus (D.*)'.(E.s)' as the only element removed from W is u for whi
h (I.e) guarantees that no looseu
smessage exists. (E.t)' as no notifyu

p messages were 
onsumed and no state of a transitionwas 
hanged.From (F.s) follows that no tokenv
s message 
an exist. Thus (F.*)'.(G.s)' as the only element removed from W is u whi
h was in L before and for whi
h per(G.s) no lo
ku

s message exists. (G.t)' as no state of a transition was 
hanged, the only
onsumed a
kLv
p message has p = s and v = u, and no lo
ku

s message exists per (G.s).(H.s)' as the only element removed from W is u for whi
h (I.e) guarantees that no a
kUu
smessage exists. (H.t)' as no state of a transition was 
hanged.(I.s)' as for both W and L the only element removed is u for whi
h one a
kLu

s messagewas 
onsumed and no se
ond one exists as per (B). (I.t)' as no state of a transition was
hanged.From (J.s) follows that no message unlo
kv
s exists. Thus (J.*)'. Similarly from (K.s)follows (K.*)'. From (L.s) follows (L.*)'.Terms only improved for (M.a)', (M.
)', (M.d)', (N.*)', (O.a)', (P.*)', (Q.a)', and (R.a)'.To show (M.b)', assume some transition v exists su
h that lo
kingv(L

′, l, T )
∼
∈ q and

s ∈ T \ (L′ ∪ {l}). If v = u then from (I.t) follows that s /∈ T and (M.b)' holds. For
v 6= u nothing relevant 
hanged as only u was removed from W . Thus (M.b)'.(O.b)' as the only element new to s• \ (W ∪ {t}) is u for whi
h (I.t) guarantees thatlo
kingu(L

′, l, T )
∼
∈ q with s /∈ T . (O.
)' as the only 
onsumed message was a
kLu

s and uwas removed from W .52



5.2 How It Does WorkCase waitings(t, L, W )
{a
kUu

s };∅−−−−−→As
waitings(t, L, W \ {u}), u 6∈ L, u ∈ W :Then α(q′) as follows: (A.b)', (B)', (*.e)', (C.*)', (D.*)', (E.*)', (F.*)', (H.t)', (I.t)', (J.*)',(K.*)', (L.*)', (M.*)', (N.*)', (O.*)', (P.*)', (Q.a)', and (R.a)' as in the previous 
ase using(H.*) instead of (I.*) and the di�erent message name, leaving (G.s)', (G.t)', (H.s)', and(I.s)' to be proven here.(G.s)' as the only element removed from W is u for whi
h (H.e) guarantees that no lo
ku

smessage exists. (G.t)' as no state of a transition was 
hanged and no a
kLu
p was 
onsumedin the step.(H.s)' as the only element removed from W is u for whi
h one a
kUu

s message was 
on-sumed and no se
ond one exists per (B).(I.s)' as the only element removed from W is u for whi
h (H.e) guarantees that no a
kLu
smessage exists.Case waitings(t, ∅, ∅)

{internalPassTokent
s};{tokent

s}−−−−−−−−−−−−−−−−−→As
emptys:Then α(q′) as follows: (A.b)' as f′ didn't 
hange. (B)' as per (F.s) no tokent

s messageexisted before.From (C.s) follows that no notifyu
s messages existed. Thus (C.*)'. Similarly from (D.s)follows (D.*)'. From (E.s) follows (E.*)'.From (F.s) follows that no tokenu
s message existed before. For the new tokent

s message(F.s)' follows from the performed step. Thus (F.s)'. From (O.a) follows that �ringt(T )
∼
∈ qwith s /∈ T . Thus (F.t)'. From (L.s) follows that no newTokenu

s message exists. Thus(F.e)'.From (G.s) follows that no lo
ku
s message existed before. Thus (G.*)'. Similarly from(H.s) follows (H.*)'. From (I.s) follows (I.*)'. From (J.s) follows (J.*)'. From (K.s)follows (K.*)'. From (L.s) follows (L.*)'.From (O.a) follows that t is in a state �ringt(T ) with s /∈ T . From (O.b) follows that all

u ∈ s• \ {t} are in a state lo
kingu(L
′, l, T ) with s /∈ T . Thus (M.a)' and (M.b)'.Terms only improved for (M.
)', (M.d)', (N.b)', (N.
)', (N.d1)', (N.d2)', (N.d3)', (O.*)',(P.*)', (Q.a)', and (R.a)'.(N.a)' with the newly produ
ed tokent
s message. �After having shown that every step of the implementation implies an equivalent stepof the original net as well, the other dire
tion is now shown: Every step of the net isalso possible in the implementation. However this does not hold for all implementationstates, but only for �normalised� implementation states, those whi
h 
ould be an initialimplementation state as given in De�nition 5.2.1 or De�nition 5.2.2.
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5 Distributed Systems and Linear TimeDe�nition 5.2.6Let N be a plain net and let AN be the FSM based implementation of it.Let n = |TN | + |SN |.The fun
tion F : P(SN) → QAN is de�ned su
h that
∀1 ≤ i ≤ n. ((πi(F(M)) = lo
kingt(∅,⊥, ∅) ∧ t ∈ TN) ∨

(πi(F(M)) = emptys ∧ s ∈ SN \ M) ∨

(πi(F(M)) = prenotifys ∧ s ∈ M))

∧ πn+1(F(M)) = ∅ .The fun
tion F is well de�ned as the result must lie within QAN and is thus unique. Alsoapplying f after F results in the identity.Lemma 5.2.2
f(F(M)) = M .ProofLet M ⊆ P(SN).Take any s ∈ M . As F maps into QAN , there must, a

ording to De�nition 3.2.2, besome index i su
h that πi(F(M)) ∈ QAs . As s /∈ TN and s ∈ M , that element must have

πi(F(M)) = prenotifys. Take any s 6∈ M . Again there exists some i with πi(F(M)) ∈ QAs .And from s /∈ M then follows that πi(F(M)) = emptys. Similarly for every t ∈ TN followsthat an i exists for whi
h πi(F(M)) = lo
kingt(∅,⊥, ∅). As F(M) has distin
t values atall these indi
es, the indi
es must be distin
t, as n = |SN | + |TN | the �rst n indi
es of
F(M) are uniquely determined. Also πn+1(F(M)) = ∅.Thus for all s ∈ M follows that prenotifys

∼
∈ F(M) and as no messages exists s ∈ f(F(M)).For all s /∈ M follows that emptys

∼
∈ F(M) and as no transition is in �ringt(T ) for any T ,also s /∈ f(F(M)). �Proposition 5.2.2Let N be a plain net and let AN be the FSM based implementation of it.(i) F(MN

0 ) = qAN
0 and(ii) If M [G〉N M ′, then there exists a sequen
e q0, q1, . . . , qn of states, a sequen
e

I1, I2, . . . , In, and a sequen
e O1, O2, . . . , On su
h that q0
I1;O1−−−→AN

q1
I2;O2−−−→AN

· · ·
In;On−−−→AN

qn, F(M) = q0, F(M ′) = qn, and there exists a j, 1 ≤ j ≤ n su
hthat i 6= j ⇒ Oi = ∅ and Oj = {�ret | t ∈ G}.ProofThe allegedly existing sequen
e 
an be des
ribed uniquely by giving the performed inputand internal a
tions. To make the exe
ution sequen
e unique, assume an arbitrary total54



5.2 How It Does Workorder ≤ on transitions. The following uses the notation numi(X) to denote the i-thelement of a totally ordered set, in parti
ular to sele
t the i-th smallest transition a

ordingto the just de�ned ≤ and to sele
t the i-th smallest pla
e a

ording to the global orderof pla
es used in the 
onstru
tion of the FSM based implementation.There exist x1, x2, x3, x4, and x5 su
h that the following sequen
e ful�ls all 
onditions.
I1 = {internalNotifys | s ∈ •G}

I2 =
{notifyt

p

∣

∣

∣ t ∈ (•G)•, p = num1(
•t ∩ •G)

}

I3 =
{notifyt

p

∣

∣

∣ t ∈ (•G)•, p = num2(
•t ∩ •G)

}

· · · · · ·

Ia−1 =
{notifyt

p

∣

∣

∣ t ∈ (•G)•, p = numx1
(•t ∩ •G)

}

Ia =
{internalLo
kt

s

∣

∣

∣ t ∈ G, s = num1(
•t)

}

Ia+1 =
{lo
kt

s

∣

∣

∣ t ∈ G, s = num1(
•t)

}

Ia+2 =
{su

esst

s

∣

∣

∣ t ∈ G, s = num1(
•t)

}

Ia+3 =
{internalLo
kt

s

∣

∣

∣ t ∈ G, s = num2(
•t)

}

Ia+4 =
{lo
kt

s

∣

∣

∣ t ∈ G, s = num2(
•t)

}

Ia+5 =
{su

esst

s

∣

∣

∣ t ∈ G, s = num2(
•t)

}

· · · · · ·

Ib−3 =
{internalLo
kt

s

∣

∣

∣ t ∈ G, s = numx2
(•t)

}

Ib−2 =
{lo
kt

s

∣

∣

∣ t ∈ G, s = numx2
(•t)

}

Ib−1 =
{su

esst

s

∣

∣

∣ t ∈ G, s = numx2
(•t)

}

Ib =
{internalFiret

∣

∣

∣ t ∈ G
}

Ib+1 =
{got

s

∣

∣

∣ t ∈ G, s ∈ •t
}

Ib+2 =
{looset

p

∣

∣

∣ t ∈ (•G)• \ G, p = num1(
•t ∩ •G)

}

Ib+3 =
{looset

p

∣

∣

∣ t ∈ (•G)• \ G, p = num2(
•t ∩ •G)

}

· · · · · ·

Ic−1 =
{looset

p

∣

∣

∣ t ∈ (•G)• \ G, p = numx3
(•t ∩ •G)

}

Ic =
{a
kUt

p

∣

∣

∣ p ∈ •G, t ∈ num1(p
• \ G)

}

Ic+1 =
{a
kUt

p

∣

∣

∣ p ∈ •G, t ∈ num2(p
• \ G)

}

· · · · · ·

Id−1 =
{a
kUt

p

∣

∣

∣ p ∈ •G, t ∈ numx4
(p• \ G)

}
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5 Distributed Systems and Linear Time
Id =

{internalPassTokent
s

∣

∣

∣ t ∈ G, s ∈ •t
}

Id+1 =
{tokent

s

∣

∣

∣ t ∈ G, s = num1(
•t)

}

Id+2 =
{tokent

s

∣

∣

∣ t ∈ G, s = num2(
•t)

}

· · · · · ·

Ie−1 =
{tokent

s

∣

∣

∣ t ∈ G, s = numx5
(•t)

}

Ie =
{internalDonet

∣

∣

∣ t ∈ G
}

Ie+1 =
{newTokent

s

∣

∣

∣ s ∈ G•
}

Finally, j = b. �There are two additional properties of the implementation that will be ne
essary to prove
orre
tness in Theorem 5.2.1. The �rst property is 
on
erned with deadlo
ks, i.e. stateswhere no further a
tivity is possible, whi
h the implementation should not introdu
e. Theimplementation must only deadlo
k in states whi
h are related to states where a deadlo
kwas present in the original net. The se
ond property does a similar thing for livelo
ks, i.e.in�nite sequen
es of unobservable a
tivity. As the original net will be a plain net though,the original net 
annot 
ontain any livelo
ks, and hen
e the implementation should notin
lude any either.The implementation does not have a deadlo
k, if the original 
ould have pro
eeded.Proposition 5.2.3Let N be a plain net and let AN be the FSM based implementation of N . Let q ∈ QANwith α(q).If there exists an A su
h that f(q)
A
−→N then there also exist I, O and q′ su
h that

q
I;O
−→AN

q′. (Note that O does not need to have anything in 
ommon with A).ProofAssume no su
h O exists. Note �rst that also O = ∅ is perfe
tly a

eptable, so no internala
tivity may o

ur either.notifyt
s

∼
∈ q would lead to some a
tivity via (C.t). su

esst

s

∼
∈ q would lead to a
tivity via(D.t). looset

s via (E.t) or (C.t). tokent
s via (F.t). lo
kt

s via (G.s) or (J.s). a
kUt
s via (H.s).a
kLt

s via (I.s), (G.s) or (J.s). unlo
kt
s via (J.s). got

s via (K.s). newTokent
s via (L.s). Thusno message exists in q.Also, there is no transition t is in a state of �ringt(T ) for any T . If T = •t there isa
tivity. Thus from (N.a) and the absen
e of messages there exists an s ∈ •t \ T withwaitings(t, L, W )

∼
∈ q. If W = ∅ there is a
tivity. Thus from (O.
) some messages existand there is a 
ontradi
tion. Thus no transition t in a state �ringt(T ) 
an exist in q.56



5.2 How It Does WorkFrom f(q)
A
−→N follows that there exists some G with f(q) [G〉N . Now take t ∈ G. Clearly

•t ⊆ f(q). From De�nition 5.2.4 then for every s ∈ •t either prenotifys

∼
∈ q, unlo
keds

∼
∈ q,lo
keds(u, L)

∼
∈ q for some u and L, or �ringu(T )

∼
∈ q for some u and T . If prenotifys

∼
∈ qthere is a
tivity and �ringu(T )

∼
∈ q is impossible as well. If unlo
keds

∼
∈ q then from (R.a)and the absen
e of messages follows that ∀u ∈ s•∃L′, l, T. lo
kingu(L
′, l, T )

∼
∈ q ∧ s ∈ T .If lo
keds(u, L)

∼
∈ q then from (P.a), (P.b), and the absen
e of messages follows that

∀u ∈ s•∃L′, l, T. lo
kingu(L
′, l, T )

∼
∈ q ∧ s ∈ T . Repeating these arguments for ea
h s ∈ •tit follows that lo
kingt(L

′, l, •t)
∼
∈ q. If l = ⊥ there is a
tivity, thus l 6= ⊥.Then from (M.d) and the absen
e of messages follows that lo
kedl(u, L′)

∼
∈ q with t ∈ L′and u 6= t. From (P.
) and the absen
e of messages then lo
kingu(L

′′, l′, T ′)
∼
∈ q with

l ∈ L′′. Assume l′ = ⊥ then together with L′′ 6= ∅ follows from Lemma 5.2.1 that T ′ = •uand there is a
tivity. Thus l′ 6= ⊥ and from Lemma 5.2.1 l < l′.Now 
onsider a pla
e p ∈ •u. Per (M.a) follows that either unlo
kedp

∼
∈ q, lo
kedp(. . .)

∼
∈ q,or waitingp(. . .)

∼
∈ q. With (O.a) however, the latter possibility is a 
ontradi
tion withthe fa
t that no �ringv(. . .)

∼
∈ q.From here on, the above arguments 
an be repeated, yielding a new l′ ea
h turn, andalways stri
tly larger than the previous one. As N is �nite however, at some point allpla
es are exhausted. Thus there is a 
ontradi
tion with the assumption that no a
tivityis possible. �The implementation does not have a livelo
k.Proposition 5.2.4Let N be a plain net and let AN be the FSM based implementation of N . Let q ∈ QANwith α(q).There exists no in�nite sequen
e I1, I2, . . . su
h that q

I1;∅−−→AN

I2;∅−−→AN
· · · .ProofAssume an in�nite sequen
e I1, I2, . . . su
h that q

I1;∅−−→AN

I2;∅−−→AN
· · · exists.As no visible output is allowed while the sequen
e is exe
uting, no �ret messages may beprodu
ed. The same step produ
ing the �ret messages however is the only step in whi
hgot

s messages are produ
ed. Thus no step of the sequen
e may produ
e new got
s messages.As N is �nite and α(q) (B) holds, it follows that only �nitely many got

s messages exist in
q. As the sequen
e is assumed to be in�nite however, there must be an Ii after whi
h nofurther got

s messages are 
onsumed.The only step produ
ing looseu
s messages however 
onsumes got

s messages. Again only�nitely many looset
s messages exist, thus there must be some Ij after whi
h no furtherlooset

s messages are 
onsumed. As all possibilities to produ
e an a
kUt
s or an a
kLt

s message57



5 Distributed Systems and Linear Timerequire that a looset
s message is 
onsumed, there is a point after whi
h no further of thesemessages is produ
ed and some Ik after whi
h no a
kLt

s and no a
kUt
s is 
onsumed.Also the only step where a pla
e enters its waitings(t, L, W ) phase 
onsumes a got

s message.Thus there must be some Il after whi
h no pla
e enters its waitings(t, L, W ) phase. Only�nitely many pla
es exist, and whenever a pla
e enters its emptys phase, it exited froma waitings(t, L, W ) phase. Thus there must be some Im after whi
h no pla
e enters itsemptys phase. As every pla
e 
ame from an emptys state when it enters its prenotifysphase, there must be a some In after whi
h no pla
e enters its prenotifys phase. Thusthere must be some Io after whi
h no pla
e leaves its prenotifys phase. As the 
reation ofa notifyt
s message requires that s leaves its prenotifys phase there must be some Ip afterwhi
h no further notifyt

s messages are produ
ed and some Iq after whi
h no further notifyt
smessages are 
onsumed.After Im as no pla
e enters its emptys phase, no further tokent

s messages are produ
ed.Thus there is a Ir after whi
h no further tokent
s messages are 
onsumed. After that pointno transition 
an enter its �ringt(

•t) state, as every transition must have at least oneprepla
e (otherwise N would not be 
onta
t free), and the �ringt(T ) phase starts with
T = ∅. If no transition enters its �ringt(

•t) anymore there must be some Is when the lasttransition leaves its �ringt(
•t) state and the last newTokent

s message is produ
ed. Thusthere is some point It after whi
h no further newTokent
s message is 
onsumed.After Ij and Iq no looset

s and no notifyt
s messages are 
onsumed, thus a transition in a statelo
kingt(L, l, T ) 
an not 
hange the T 
omponent any more. In parti
ular no transition
an enter a state lo
kingt(L, l, T ) with l 6= ⊥ and T 6= •t. Thus there is some Iu afterwhi
h no transition leaves a lo
kingt(L, l, T ) state with l 6= ⊥ and T 6= •t. As leaving thesestates and 
onsuming looset

s messages are the only two possibilities of produ
ing unlo
kt
pmessages, there is some point after whi
h no further unlo
kt

p messages are produ
ed andsome Iv after whi
h none are 
onsumed any more.As 
onsuming unlo
kt
s messages and leaving the prenotifys state are the only possibilitiesfor a pla
e to enter its unlo
keds state and both are impossible after Iv and Ip, there mustbe a point after whi
h no pla
e enters its unlo
keds state any more. Thus there must alsobe some Iw after whi
h no pla
e leaves its unlo
keds state.Consuming unlo
kt

s messages and leaving the unlo
keds state of a pla
e are the onlypossibilities for a su

essts message to be produ
ed. Both are impossible after Iv and Iw.Thus there must also be some Ix when no further su

essts message is 
onsumed.As the only ways for a transition to enter a state of the form lo
kingt(L,⊥, •t) are 
on-suming a notifyt
s message or 
onsuming a su

esst

s message, this does not happen after Ixand Iq. Thus there must be some point Iy after whi
h no transition leaves a state of theform lo
kingt(L,⊥, •t). As lo
kt
s messages are only produ
ed when leaving su
h a state,no lo
kt

s messages are produ
ed after Iy and there is some Iz after whi
h no lo
kt
s messageis 
onsumed.Thus no notifyt

s is 
onsumed after Iq, no su

essts is 
onsumed after Ix, no looset
s is58



5.2 How It Does Work
onsumed after Ij, no tokent
s is 
onsumed after Ir, no lo
kt

s is 
onsumed after Iz, no a
kUt
sis 
onsumed after Ik, no a
kLt

s is 
onsumed after Ik, no unlo
kt
s is 
onsumed after Iv, nogot

s is 
onsumed after Ii, no newTokent
s is 
onsumed after It. Thus there is a point afterwhi
h no messages whatsoever are 
onsumed.Furthermore no internalLo
kt 
an be performed after Iy, no internalDonet 
an be per-formed after Is, no internalNotifys 
an be performed after Io, no internalPassTokens 
anbe performed after Im. Thus there is some point after whi
h no step is possible anymore.Therefore no in�nite sequen
e I1, I2, . . . su
h that q

I1;∅−−→AN

I2;∅
−−→AN

· · · exists. �Given the automaton based des
ription of how to en
ode arbitrary nets into a distributedform, the following 
onstru
tion transforms those automatons ba
k into nets, thereby�nishing the distributed implementation transformation. The transformation ba
k tonets pro
eeds in two separate steps, �rst the sequential FSMs representing the pla
es andtransitions of the original net are transformed into nets, then the parallel 
ompositionoperator between state ma
hines is repla
ed by a parallel 
omposition operator betweennets.In the following 
onstru
tion, the power of multi-labelled transitions will be useful � fora short while � be
ause there is no need to split up the parallel output of the automatonin an unnatural way. Later, all the net implementations of the generated FSMs will be
ombined again, and only singleton labelled transitions will remain. At that point, theresulting net is a plain τ -net.De�nition 5.2.7Let A be a serial FSM.The net based implementation of A is the net NA = (SNA, TNA, F NA, MNA
0 , ℓNA) with� SNA =

{stateA,q

∣

∣

∣ q ∈ QA
}

∪
{inputi ∣

∣

∣ i ∈ ΣA
I

},� TNA =
{doq,i,O,q′

∣

∣

∣ q
{i};O
−−→A q′

},� F NA =

{

(stateA,q, doq,i,O,q′), (inputi, doq,i,O,q′),
(doq,i,O,q′, stateA,q′)

∣

∣

∣

∣

∣

q
{i};O
−−→A q′, i ∈ ΣA

I

}

∪
{

(stateA,q, doq,i,O,q′), (doq,i,O,q′, stateA,q′)
∣

∣

∣ q
{i};O
−−→A q′, i ∈ ΣA

τ

}

,� MNA
0 = {state

A,qA
0

}, and� ℓNA(doq,i,O,q′) = O.The set of input pla
es of su
h a net is de�ned as I(N) =
{inputi ∣

∣

∣ i ∈ ΣA
I

}.Also, the 
omposition operator between state ma
hines needs to be transformed into anoperator between nets.De�nition 5.2.8Let N and N ′ be two nets with 
learly de�ned input pla
es, i.e. nets produ
ed byDe�nition 5.2.7 or by appli
ation of this de�nition. 59



5 Distributed Systems and Linear TimeLet I = I(N) ∪ I(N ′).The asyn
hronous parallel 
omposition of the two nets, N‖N ′, is de�ned as the net
N‖N ′ = (SN‖N ′

, TN‖N ′
, F N‖N ′

, M
N‖N ′

0 , ℓN‖N ′
) with� SN‖N ′

= SN ∪ SN ′,� TN‖N ′
= TN ∪ TN ′,� F N‖N ′
= F N ∪ F N ′

∪
{

(t, inputo) ∣

∣

∣ t ∈ TN ∪ TN ′
, inputo ∈ I, o ∈ ℓN‖N ′

(t)
},� M

N‖N ′

0 = MN
0 ∪ MN ′

0 , and� ℓN‖N ′
(t) =







ℓN(t) \ {i | inputi ∈ I} if t ∈ TN

ℓN ′
(t) \ {i | inputi ∈ I} if t ∈ TN ′ .The set of input pla
es of the 
omposition is de�ned as

I(N‖N ′) = I \
{inputi ∣

∣

∣ ∃t ∈ TN . i ∈ ℓN(t) ∨ ∃t ∈ TN ′

. i ∈ ℓN ′

(t)
}Using the above de�nition, the net based implementation of an asyn
hronous parallel
omposition of serial FSMs is de�ned as the asyn
hronous parallel 
omposition of the netbased implementations of the 
omposed FSMs.The net based implementation of a parallel 
omposition of FSMs 
an be understood as anetwork of sequential ma
hines in the sense of De�nition 3.1.4 by adding the inputi pla
esas bu�er pla
es also to the 
omponent whi
h outputs to them.The behavioural relation between the state ma
hine 
omposition and the net based im-plementation thereof is very 
lose, as a bije
tive fun
tion between automaton states andrea
hable net states exists.De�nition 5.2.9Let A1, A2, . . . , An be serial FSMs with pairwise mat
hing a
tion signatures, su
h thattheir asyn
hronous parallel 
omposition A‖ is 1-safe.Let N1, N2, . . . , Nn be the respe
tive net based implementations. Let N‖ be the asyn-
hronous parallel 
omposition of the nets.The fun
tion G : QA‖ → P(SN‖) is de�ned as

G(q) =
{stateAi,πi(q)

∣

∣

∣ 1 ≤ i ≤ n
}

∪ {inputo | o ∈ πn+1(q)}For markings M where in ea
h net N1, N2, . . . , Nn exa
tly one pla
e of the formstateAi,qi
is marked, the fun
tion g : P(SN‖) → QA‖ is de�ned su
h that

(∀1 ≤ i ≤ n∃q. πi(g(M)) = q ∧ stateAi,q
∈ M)

∧ πn+1(g(M)) = {o | inputo ∈ M}60



5.2 How It Does WorkLemma 5.2.3Let A1, A2, . . . , An be serial FSMs with pairwise mat
hing a
tion signatures su
h thattheir asyn
hronous parallel 
omposition A‖ is 1-safe and su
h that Σ
A‖

I = ∅.Let N1, N2, . . . , Nn be the respe
tive net based implementations. Let N‖ be the asyn-
hronous parallel 
omposition of the nets.Let M, M ′ be rea
hable markings of N‖. Let q, q′ be rea
hable states of A‖.(i) g(G(q)) = q(ii) G(g(M)) = M(iii) G(q
A‖

0 ) = M
N‖

0(iv) g(M
N‖

0 ) = q
A‖

0(v) q
I;O
−→A‖

q′ ⇒ G(q)
O
−→N‖

G(q′) ∨ (O = ∅ ∧ G(q)
τ

−→N‖
G(q′))(vi) M

O
−→N‖

M ′ ⇒ ∃I. g(M)
I;O
−→A‖

g(M ′)(vii) M
τ

−→N‖
M ′ ⇒ ∃I. g(M)

I;∅
−→A‖

g(M ′)Proof(i): For ea
h net Ni, stateAi,πi(q)
∈ G(q) and ∀x. stateAi,x

∈ G(q) ⇒ x = πi(q). Hen
e gis de�ned for G(q).Also for 1 ≤ i ≤ n, πi(g(G(q))) = πi(q). Finally πn+1(g(G(q))) = πn+1(q).(ii): M is a rea
hable marking of N‖. From De�nition 5.2.7 follows that exa
tly onepla
e of the from stateAi,qi
is marked for every 1 ≤ i ≤ n. Hen
e g(M) is de�ned. Inparti
ular for every 1 ≤ i ≤ n, πi(g(M)) = qi and hen
e stateAi,qi

∈ G(g(M)). Finallyinputo ∈ M ⇔ inputo ∈ G(g(M)).(iii): Dire
tly from De�nition 5.2.7, De�nition 5.2.8, and De�nition 5.2.9.(iv): From (iii) and (i).(v): Consider �rst a singleton I = {a}.Assume q
{a};O
−−−→A‖

q′. There is a unique automaton Ai with a ∈ ΣAi

I ∪ ΣAi
τ where thea
tion is either input or inner a
tion.If a ∈ ΣAi

I then with Σ
A‖

I = ∅ De�nition 3.2.2 guarantees that a ∈ πn+1(q) and De�ni-tion 5.2.7 produ
ed a transition doπi(q),a,Oa,πi(q′)
whi
h 
onsumes a token from inputi andone from stateAi,πi(q)

. Hen
e this transition is enabled in the marking G(q) as all thesepla
es are marked.The transition produ
es a new token on stateAi,πi(q′)
and, using De�nition 5.2.8, one tokenon ea
h pla
e in {inputo ∣

∣

∣ o ∈ Oa ∩ Σ
A‖
τ

}. Only one pla
e of the form stateAi,x
is markedin G(q). Thus the postpla
e of this form is either a prepla
e or empty. All postpla
es ofthe form inputo must be empty as well, as otherwise the step would violate the assumptionthat A‖ is 1-safe. 61



5 Distributed Systems and Linear TimeFurthermore, the label of doπi(q),a,Oa,πi(q′)
whi
h remains after all nets have been 
omposedis Oa ∩ Σ

A‖

O , whi
h, using De�nition 3.2.2, equals O.If a ∈ ΣAi
τ then De�nition 5.2.7 produ
ed a transition doπi(q),a,Oa,πi(q′)

whi
h has the singleprepla
e stateAi,πi(q)
. Hen
e this transition is enabled in the marking G(q).The rest of the argument pro
eeds as above.Now 
onsider a non-singleton I. As the 
omponents have mat
hing a
tion signatures,no two 
omponents share input or output a
tions. Thus pre- and postpla
es of all �redtransitions are distin
t and they 
an all �re in parallel.(vi) and (vii):As already noted above, in a rea
hable marking exa
tly one pla
e of the form stateAi,xwill be marked in ea
h net Ni. In parti
ular this holds for M and M ′, thus g is de�nedfor both.Instead of 
onsidering a whole step of N‖ 
onsider �rst a single transition �ring.Assume that M [{t}〉N‖

M ′. Let i be the index of the net where t originated.If t has some prepla
e of the form inputa, then per De�nition 5.2.7, qi
{a};Oi−−−→Ai

q′i for some
Oi (possibly empty). Also t will have one other prepla
e, namely stateAi,qi

. Furthermore
t will have the postpla
e stateAi,q

′
i
and from De�nition 5.2.8 also one postpla
e inputo forea
h o ∈ Oi ∩ Σ

A‖
τ . Note that Oi = ℓNi(t) and using De�nition 5.2.8 ℓN‖(t) = Oi ∩ Σ

A‖

O ,whi
h is the O visible in the net step or the empty set in 
ase of a τ -step.As all prepla
es of t are marked in M , all postpla
es are marked in M ′, and Σ
A‖

I = ∅De�nition 5.2.9 enfor
es that πi(g(M)) = qi, a ∈ πn+1(g(M)), πi(g(M ′)) = q′i, and
πn+1(g(M ′)) = πn+1(g(M))−{a}+Oi∩Σ

A‖
τ . Also a ∈ ΣAi

I and ℓN‖(t) = O and hen
e withall other 
omponents non-moving, the 
omposition 
an perform g(M)
{a};O
−−−→A‖

g(M ′).If t has no prepla
e of the form inputa, then per De�nition 5.2.7, qi
{a};Oi−−−→Ai

q′i with
a ∈ ΣAi

τ and a ∈ Σ
A‖
τ . The transition t will have exa
tly one prepla
e, namely stateAi,qi

.All 
onsiderations about postpla
es and output are as above.As all prepla
es of t are marked in M and unmarked in M ′, De�nition 5.2.9 enfor
esthat πi(g(M)) = qi, πi(g(M ′)) = q′i. Hen
e with all other 
omponents non-moving, the
omposed automaton 
an perform g(M)
{a};O
−−−→A‖

g(M ′).If a set of transition G is �ring, no two transitions share a 
ommon pre- or postpla
e asthey are independent. Thus the respe
tive state ma
hine 
omponents 
onsume di�erentinput messages and 
an pro
eed in parallel. �One other fa
t is still missing, namely that the given implementations are indeed dis-tributed. Every net based implementation as de�ned in this thesis is distributed.62



5.2 How It Does WorkLemma 5.2.4Let N be a net whi
h has been produ
ed by De�nition 5.2.7 or by appli
ation ofDe�nition 5.2.8.
N is distributed.ProofFirst 
ase: N has been produ
ed by De�nition 5.2.7 from an automaton A.Every transition always 
onsumes one token from a pla
e of the form stateA,q and produ
esa token on one su
h pla
e. Initially there is exa
tly one pla
e of that form marked. Thus

M ∈ [MN
0 〉 ⇒ |M ∩

{stateA,q

∣

∣

∣ q ∈ QA
}

| = 1. As every transition 
onsumes one tokenfrom su
h a pla
e, no two transitions 
an ever �re in parallel. Hen
e the trivial distributionlo
ating all elements on the same lo
ation makes the net distributed.Se
ond 
ase: N has been produ
ed by De�nition 5.2.8 and is a
tually of the form N ′‖N ′′.By indu
tion over the appli
ation depth of De�nition 5.2.8, it 
an be assumed that both
N ′ and N ′′ are distributed by distributions D ′ and D ′′ respe
tively.Without loss of generality it 
an be assumed that D ′ and D ′′ map to disjun
t sets oflo
ations. A valid distribution for N ′‖N ′′ is then D ′ ∪ D ′′ where fun
tions have beenunderstood as relations. To show that this is indeed a 
orre
t distribution, all transitionsmust be 
o-lo
ated with their prepla
es and every pair of 
on
urrently �ring transitionsmust not be 
o-lo
ated.Assume a transition t and its prepla
e p are not 
o-lo
ated. As the only entries in the�ow-relation of N ′‖N ′′ whi
h were not present in N ′ or N ′′ go from transitions to pla
esthe prepla
e relation between t and p must have been present in N ′ or N ′′, whi
h violatesthe assumption that the respe
tive net is distributed.Assume two transitions t and u �re in parallel. If they both belong to the same net, N ′ or
N ′′, then that net is not distributed, violating the assumptions. If they belong to di�erentnets they are not 
o-lo
ated as D ′ and D ′′ map to disjun
t sets of lo
ations. �Putting it all together, the main theorem 
an �nally been proven.Theorem 5.2.1Let N be a plain net. Let N ′ be the net based implementation of the FSM basedasyn
hronous implementation of N . Let N ′′ be the net N ′ where every label of theform {�ret} has been repla
ed by the label {t}.Then N ′′ is distributed and 
ompleted step tra
e equivalent equivalent to N .Proof
N ′ is distributed as per Lemma 5.2.4. As this property is independent of labelling, so is
N ′′. 63



5 Distributed Systems and Linear TimeLet A‖ be the FSM based asyn
hronous implementation of N .�CST(N ′′) ⊆ CST(N)�: Assume a1a2a3 . . . an ∈ CST(N ′′) and an 6= 0 and an 6= δ.Then per de�nition MN ′′

0
a1a2a3...an======⇒N ′′ M for some M .Undoing the renaming and applying Lemma 5.2.3 one obtains that A‖ 
an perform asequen
e of a
tions where the only visible outputs are of the form {�ret | t ∈ ai} in 
orre
torder and arrives at g(M).From Proposition 5.2.1 then follows that MN

0
a1−→N

a2−→N
a3−→N · · ·

an−→N f(g(M)) and thus
a1a2a3 . . . an ∈ CST(N).Now assume that a1a2a3 . . . an0 ∈ CST(N ′′). Then per de�nition MN ′′

0
a1a2a3...an======⇒N ′′ Mfor some M su
h that M X

τ
−→N ′′ and M X

A
−→N ′′ for all A.Using the reasoning above, MN

0
a1−→N

a2−→N · · ·
an−→N f(g(M)).Assume that f(g(M))

A
−→N . Then from Proposition 5.2.3 follows that g(M)

I;O
−→A‖for some I and O. If O = ∅ then Lemma 5.2.3 leads to M

τ
−→N ′′ , and if O 6= ∅then Lemma 5.2.3 leads to M

A
−→N ′′ both of whi
h violate the assumptions. Hen
e

f(g(M)) X
A
−→N and as N is a plain net also f(g(M)) X

τ
−→N and a1a2a3 . . . an0 ∈ CST(N).Now assume that a1a2a3 . . . anδ ∈ CST(N ′′). Then from Lemma 5.2.3 follows that A‖ 
anrea
h a state where an in�nite sequen
e of moves without output is possible, 
ontradi
tingProposition 5.2.4. Thus no su
h tra
e 
an exist in CST(N ′′).�CST(N) ⊆ CST(N ′′)�: Assume a1a2a3 . . . an ∈ CST(N) and an 6= 0 and an 6= δ.Then per de�nition MN

0
a1a2a3...an======⇒N M for some M .Then via Proposition 5.2.2 A‖ 
an perform a sequen
e of state transitions where the onlyvisible outputs are of the form {�ret | t ∈ ai} in 
orre
t order and arrives in the state

F(M).From Lemma 5.2.3 follows that N ′ 
an performMN ′

0
{�ret | t∈a1}···{�ret | t∈an}==================⇒N ′ G(F(M)).Via the renaming then MN ′′

0
a1···an===⇒N ′′ G(F(M)) and a1a2a3 . . . an ∈ CST(N ′′).Now assume that a1a2a3 . . . an0 ∈ CST(N). Then per de�nition MN

0
a1a2a3...an======⇒N M forsome M su
h that M X

τ
−→N and M X

A
−→N for all A.As above, A‖ 
an rea
h F(M) while produ
ing the 
orre
t outputs. From Proposition 5.2.4follows that if A‖ 
ontinues from F(M) by performing steps without output, it will ul-timately rea
h a state q where it 
annot perform any more silent moves. From Propo-sition 5.2.1 follows that f(q) = f(F(M)). Furthermore from Lemma 5.2.2 follows that

f(F(M)) = M .From Lemma 5.2.3 follows that N ′ 
an perform MN ′

0
{�ret | t∈a1}···{�ret | t∈an}==================⇒N ′ G(q).Via the renaming then MN ′′

0
a1···an===⇒N ′′ G(q). And from the same Lemma 5.2.3 followsthat N ′ and N ′′ 
annot perform any silent moves from G(q).64



5.2 How It Does WorkNow assume G(q)
A
−→N ′′ for some A 6= ∅. Then N ′ 
an pro
eed with {�ret | t ∈ A}and from Lemma 5.2.3 follows that A‖ 
ould pro
eed via q

I;{�ret | t∈A}−−−−−−−−→A‖
for some I.But then Proposition 5.2.1 shows that N 
ould have pro
eeded via f(q)

A
−→N and using

f(q) = M there is a 
ontradi
tion to the assumption that it 
annot. Thus G(q) X
A
−→N ′′.Hen
e a1a2a3 . . . an0 ∈ CST(N ′′).Finally no tra
e ending in δ 
an exist in CST(N), as N is plain. �

65



6 Con
lusion6.1 Dis
ussionThis thesis has shown that all �nite plain 1-safe Petri nets 
an be implemented in adistributed fashion while preserving behaviour up to step tra
e equivalen
e. This se
tiondis
usses some possible interpretations of this result.First note that of the three restri
tions imposed upon the original net, only one is signif-i
ant. 1-safety 
an be ensured by introdu
ing 
o-pla
es in a �rst step. Plainness 
an beintrodu
ed by relabelling all transitions. Undoing that relabelling after the implementa-tion has been generated should produ
e a net equivalent to the non-plain original.The restri
tion to �nite nets however is a serious limitation, whi
h 
an not be solvedtrivially due to various possibilities for livelo
k. The simplest 
ase is just an in�nite set oftransitions of whi
h ea
h has a single prepla
e whi
h is marked initially. Then the proto
olgiven in Se
tion 5 makes in�nitely many internalNotifys a
tions possible in sequen
e. Thislivelo
k is arti�
ial however, as it only o

urs due to voluntary interleaving of all thesea
tions. But even if 
ompleted step tra
e equivalen
e 
ould somehow be mended notto dete
t these kind of �parallel� livelo
ks, more serious 
ases exist, due the followingproblem.The implementation is 
orre
t be
ause step tra
e equivalen
e does allow the system toperform steps in sequen
e whi
h were parallel in the original. This fa
t 
ould be seen asa violation of the usual intuition. Usually, when in
luding the interleavings of parallela
tions into the permissible tra
es of a system, one assumes that su
h interleavings o

urdue to imperfe
tion in timing. As the 
on
ept of �same point in time� is dubious indistributed systems anyway, this only seems natural. However, the implementation givenin this thesis uses these interleavings in a di�erent way. A
tions whi
h were independentbefore 
an o

ur in stri
t sequen
e in some runs of the implementation. This di�eren
ebe
omes apparent if one 
onsiders the 
ausal stru
ture of a
tions. Two a
tions whi
hwere parallel in the original system are never 
ausally dependent upon ea
h other. In theimplementation su
h a dependen
y 
an arise spontaneously however.Consider the net in Figure 4.5 and the step tra
e {v}{t}. In the original net, no tokenwas passed from t to v or vi
e versa, the two transitions �red 
ausally independent. In theimplementation however, the following s
enario 
an unfold. u sends a lo
ku
p to p whi
hsubsequently grants the lo
k to u. Then v sends a lo
kv

q to q whi
h grants the lo
k to v.Then t attempts to lo
k p but re
eives no immediate answer as p is lo
ked to u. Then
u tries to lo
k q but also re
eives no immediate answer as q is lo
ked to v. Then v �res,66



6.1 Dis
ussion
onsuming the token on q, whi
h in turn produ
es a looseu
q message. This message then
auses u to release its lo
k on p, whi
h subsequently grants the lo
k to t whi
h �nally�res. This �ring of t is 
ausally dependent on the �ring of v. Te
hni
ally this 
an beshown by tra
ing the an
estry of the tokens �nally 
onsumed by t and showing that someof them stem from the tokens produ
ed by v.Some 
osmeti
s 
an be applied by splitting the �ring of transitions into an invisible partwhi
h handles the proto
ol with the prepla
es and only then performing the visible output,thus making the �ring of t again 
ausally independent of the �ring of v. However these
osmeti
s 
annot solve the underlying problem that t is 
ausally dependent upon thetoken initially pla
ed on q. While this may seem harmless in the example, and poses noproblem for �nite Petri nets, 
onsider an in�nite 
hain of transitions as if Figure 4.5 hadbeen repeated downwards. Then in�nitely long 
ausal 
hains 
an evolve, leading to a truesequential livelo
k while they unravel.In pra
ti
e however, in�nite systems do not o

ur. Even long 
ausal 
hains 
an only o

urif a long 
hain of transitions in dire
t 
on�i
t (two transitions are both enabled and sharea 
ommon prepla
e) existed in the original net. The garbling of the 
ausal stru
ture ofthe original system should not matter in pra
ti
e either, as most environments will not
are whether two a
tions have been performed in sequen
e due to imperfe
tions in timingor due to true 
ausality.Also, if Petri net model a real system, it is often possible to substitute profound al-gorithms where the net employed non-determinism. The most interesting pla
e for thistransformation in the 
onstru
tion given in this thesis is the produ
tion of a su

essu

s mes-sage after a pla
e re
eives an unlo
kt
s message. While all 
hoi
es for u are 
orre
t as perTheorem 5.2.1, some algorithms might lead to better performan
e in pra
ti
e. Possibleoptions in
lude preferring the longest waiting transition (suggested by [5℄), the transitionwhi
h already holds the most lo
ks, or the transition whi
h has the least remaining lo
ksto a
quire. The latter two options 
orrespond to a stati
 priority over all transitions,whereas the �rst option 
an be implemented by saving the set of waiting transitions in aqueue of some sort.On the theoreti
al side, this thesis has shown that arbitrary behaviours 
an be imple-mented distributedly under 
ompleted step tra
e equivalen
e and thus under all 
oarserequivalen
es as well. It is an interesting question whi
h equivalen
e relations allowdistributed implementations and where in the linear-time bran
hing-time spe
trum theboundary for distributed implementability lies. This thesis has removed a part of thegrey area on the 
oarse side, limiting the position of the boundary to be not 
oarserthan 
ompleted step tra
e equivalen
e and, with [7℄, not �ner than step readiness equiv-alen
e. Also, the present thesis hints that 
ausality 
an not be preserved in a distributedimplementation, while parallelism 
an.Additionally this thesis proposed a new model of asyn
hronous systems, whi
h is 
loselyrelated to a 
ertain 
lass of distributed Petri nets, but allows for a more 
ompa
t repre-sentation of many distributed algorithms. 67



6 Con
lusionThis thesis has also shown, to me at the very least, that the proof method employed here(and also in [8℄ and [7℄) will be inadequate if the implementations of Petri nets in
ludeany more 
omplexity. My motivation to employ the Isabelle/HOL tool was mainly fuelledby the anti
ipation of the proof of Proposition 5.2.1. Unfortunately it was not possible toverify that proof using Isabelle/HOL within the given time frame. Indeed I found usingIsabelle/HOL is mu
h more time 
onsuming than I assumed initially due to two problems.First, the automated proof and term simpli�
ation methods within Isabelle/HOL takeimpra
ti
al amounts of time if the terms get large, as it is the 
ase with the 
ombinationof all terms of the main invariant α. That problem will 
learly be solved within a fewyears, if not by better algorithms, then by faster hardware. Se
ond, due to the formalityof formal tools, one feels pressed to proof trivialities (usually turning out not be trivial atall if 
onsidered in a stri
t formal setting), whi
h distra
ts from the main line of proof.Instead of hoping for better tool support in the near future, it might be possible to de-sign proto
ols like the one in this thesis using a syn
hronous spe
i�
ation language, sayCCS, and then re�ne it towards asyn
hrony stepwise, while also re�ning the invariants. Idesigned the 
onstru
tion dire
tly in an asyn
hronous model however, so a syn
hronousversion did not seem natural. Also I feel that designing algorithms dire
tly in an asyn-
hronous model will often lead to a higher grade of parallelism then a re�nement of asyn
hronous algorithm usually yields. Using results like the one in this thesis however, itmight at some point not be ne
essary any more to implement parallelism �by hand� atall. Instead well understood and performant proto
ols might be available for all pra
ti
alproblems.6.2 Related WorkThe question whether, and if how, it is possible to implement syn
hronous system de-s
riptions in a distributed and asyn
hronous fashion has been asked and answered in avariety of ways before this thesis already.In [13℄, Lyn
h has 
olle
ted quite a lot of impossibility results about distributed systems,many of whi
h 
on
ern asyn
hronous systems. In [7℄, van Glabbeek, Goltz and myselfhave answered the question negatively for the model of Petri nets, if bran
hing-time isassumed, as already dis
ussed in Se
tion 4. In [12℄, Hopkins also identi�es some syn-
hronous behaviours whi
h 
an not be implemented in a distributed fashion, again usingPetri nets but employing a di�erent notion of distributed.The works [1℄, [2℄, [18℄, [16℄, and [10℄ by de Boer, Gorla, Klop, Nestmann, and Palamidessi
ompared asyn
hronous variations of the pro
ess algebras CCS and ACP and the π-
al
ulus with ea
h other and also with the original versions of the 
al
uli. They then at-tempted to implement seemingly less asyn
hronous variants in more asyn
hronous ones.Depending on the used equivalen
e relation and the exa
t nature of the modi�
ationsapplied to the pro
ess algebra, they rea
hed both impossibility results and working im-plementations. These pro
ess algebra 
entri
 works have the advantage that their imple-68



6.2 Related Workmentations 
an use the expressive power pro
ess algebras provide. On the other hand,the high level of abstra
tion sometimes hides syn
hronous features in the depths of theoperator semanti
s, like the atomi
 
hoi
e happening when multiple re
eivers exist for asingle message.In [3℄, Fis
her and Janssen identify systems whi
h behave equivalently, up to failuressemanti
s, whether they are implemented using syn
hronous or asyn
hronous 
ommuni-
ation, with the goal of using syn
hronous spe
i�
ations to build asyn
hronous systems.In [21℄, Rabin and Lehmann give a randomised algorithm whi
h solves the dining philoso-phers problem in an asyn
hronous and symmetri
 fashion. There are quite a lot of otherresults whi
h solve one or the other real-world problem in a distributed and asyn
hronousfashion, many of whi
h have been 
olle
ted by Lyn
h in [14℄. Indeed many methodsemployed in pra
ti
e to build asyn
hronous systems are often negle
ted in theoreti
alliterature whi
h in
ludes impossibility results, in parti
ular the possibility of using a ap-proximately 
orre
t lo
al 
lo
k and thus timeouts and the possibility of using probabilisti

hoi
es.Compared to models in the literature, asyn
hronously 
omposed state ma
hines as de�nedin this thesis are one of the most asyn
hronous models proposed. They are related most
losely to the three following models.In [22℄ W. Reisig introdu
ed networks of sequential ma
hines. While the di�eren
eshave already been outlined in Se
tion 3, I omitted a detail there to keep the impli
itassumption that tokens do not 
arry any meaningful information impli
it. In parti
ular Idropped the free-
hoi
e 
ondition on the grounds that otherwise a sequential 
omponent
ould not rea
t di�erently on di�erent input. When a Petri net models the 
ontrol �owof a 
ompli
ated system however, it is often the 
ase that tokens do not just 
arry theinformation of their presen
e but additional data. In parti
ular, where the Petri net only
ontains a non-deterministi
 and free 
hoi
e, the real system might employ an algorithmwhi
h de
ides di�erently depending on the 
on
rete information 
arried in the token. Ifa network of sequential ma
hines as de�ned by Reisig behaves 
orre
tly, this 
orre
tnessis independent of those hidden data and algorithms. The present thesis however needsan expli
it representation of the data and the algorithms relevant to the implementationproto
ol to show its 
orre
tness.Another model for asyn
hronous systems are the IO-Automata of Lyn
h and Tuttle [15℄.They are however not asyn
hronous a

ording to my intuition. While the sending of amessage 
an only be 
ontrolled by a single 
omponent and the sender 
an not be blo
keddue to input enabledness of all re
eivers, the model ignores the possibility of messageovertaking. The system sket
hed in Figure 6.1, if 
omposed using IO-Automata semanti
s,
annot rea
h the error state, while it 
an do so if 
omposed using asyn
hronous statema
hine 
omposition. A similar problem also exists in the model used for example byGouda, Chow and Lam in [11℄, whi
h they 
all �
ommuni
ating �nite state ma
hines�, asthey 
ouple sequential ma
hines using FIFO-bu�ers, again making some forms of messageovertaking impossible. 69



6 Con
lusion
{}; {a}

{}; {b}

{a}; {}

{b}; {}

{b}; {}

{a}; {}error
Figure 6.1: Two sequential 
omponents whi
h, depending on the 
omposition operator,sometimes rea
h the undesired state labelled �error�Considering all results about asyn
hronous systems, the overall pi
ture is far from 
lear.Apart from 
ountless detailed ones the following large questions remain:� How do the various models of asyn
hronous systems relate? Does asyn
hrony 
arryover into, for example, Petri net semanti
s of asyn
hronous pro
ess algebras.� Whi
h fundamental boundaries between the di�erent shades of asyn
hrony exist andwhere exa
tly are they?� Whi
h models of asyn
hronous systems are relevant in pra
ti
e?� Whi
h equivalen
e relations are best suited to des
ribe the behaviours an asyn-
hronous system or a 
omponent thereof 
an exhibit?� How to transform the knowledge about asyn
hronous systems into pra
ti
al toolslike 
ompilers or hardware synthesisers?� How to build, verify and test large asyn
hronous systems?� Whi
h is the grand unifying theory answering all these questions?
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A AppendixThe following 
ontains formal proofs in the Isabelle/HOL system for some of the 
on-stru
tions and lemmas used in this thesis.theory Drah�owToolsimports Main MultisetbeginUsed for top-down proof development and as a �ller for left-out parts.axioms proofHole: Plemma eq-
ong-fun-app: [[x = y ]] =⇒ f x = f y by simplemma dire
tContradi
tion: [[¬ P =⇒ False]] =⇒ P by blastlemma ballE-in: [[∀ x∈A. Q x ; x ∈ A; Q x =⇒ P x ]] =⇒ P x by blastlemma ballE-in-double: [[∀ x∈A. ∀ y∈B . Q x y ; x ∈ A; y ∈ B ; Q x y =⇒ P x y ]] =⇒ P x yby blastlemma bexToEx : [[∃ x ∈ A. P x ]] =⇒ ∃ x . P x by blastlemma some-
onne
t : ∧P Q . [[∃ x . P x ; ∃ x . Q x ; (SOME x . P x ) = (SOME x . Q x )]] =⇒ ∃ x .P x ∧ Q xapply (rule-ta
 x = (SOME x . P x ) in exI )apply (rule 
onjI )apply (blast intro: someI-ex )apply (rule-ta
 s = (SOME x . Q x ) and t = (SOME x . P x ) in ssubst , assumption)apply (blast intro: someI-ex )donelemma noInterse
tion-superset : [[A ∩ B = {}; C ⊆ A]] =⇒ C ∩ B = {} by blastlemma di�ImplSubset : A − B ⊆ A by blastlemma noInterse
tion-subsetDi� : [[A ∩ B = {}; A ⊆ C ]] =⇒ A ⊆ C − B by blastlemma �niteMapUnion [elim]: [[�nite S ;
∧s. s ∈ S =⇒ �nite (f s)]] =⇒ �nite (

⋃ s ∈ S . f s)by simplemma list-�xlen-expl : 0 < length xs =⇒ xs = (hd xs) # (tl xs) by for
elemma list-�xlen-expl1 : length xs = 1 =⇒ xs = [hd xs]apply (subgoal-ta
 length xs = Su
 0 )prefer 2 apply arith 73



A Appendixapply (subgoal-ta
 ∃ a as. xs = a # as ∧ length as = 0 )prefer 2 apply (
larsimp simp: length-Su
-
onv)by 
larsimplemma list-�xlen-expl2 : length xs = 2 =⇒ xs = [hd xs, hd (tl xs)]apply (subgoal-ta
 length xs = Su
 (Su
 0 ))prefer 2 apply arithapply (subgoal-ta
 ∃ a b bs. xs = a # b # bs ∧ length bs = 0 )prefer 2 apply (
larsimp simp: length-Su
-
onv)by 
larsimplemma semigroup-add .foldl-abelian-reverse:
[[semigroup-add add ; ∀ a b. add a b = add b a]] =⇒foldl add zero (xs) = foldl add zero (rev xs)apply (indu
t-ta
 xs, simp)apply (rename-ta
 x list)apply simpapply (erule-ta
 s = foldl add zero list in subst)by (rule semigroup-add .foldl-asso
, assumption)lemma predi
ate-true-if-mem: x ∈ S =⇒ S x by (simp add : mem-def )lemma mem-if-predi
ate-true: S x =⇒ x ∈ S by (simp add : mem-def )lemma predi
ate-if-in-lambda: x ∈ (λx . P x ) =⇒ P x by (simp add : mem-def )lemma set-ops-to-predi
ate.simps: showsS x =⇒ (S ∪ T ) x andT x =⇒ (S ∪ T ) x and
[[S x ; T x ]] =⇒ (S ∩ T ) x andx = y =⇒ (insert y S ) x andS x =⇒ (insert y S ) xby (blast intro: predi
ate-true-if-mem mem-if-predi
ate-true)+de�nition powermultiset :: ′a set ⇒ ( ′a multiset)setwhere powermultiset S ≡ {M . set-of M ⊆ S}primre
 list-times :: ( ′a set)list ⇒ ( ′a list)set wherelist-times [] = {[]} |list-times (x # xs) = {l . hd l ∈ x ∧ tl l ∈ list-times xs ∧ length l = Su
 (length xs)}primre
 list-times-
ompr :: ( ′a)list ⇒ ( ′a ⇒ ′b set) ⇒ ( ′b list)set wherelist-times-
ompr [] f = {[]} |list-times-
ompr (x # xs) f =
{l . hd l ∈ f x ∧ tl l ∈ list-times-
ompr xs f ∧ length l = Su
 (length xs)}de�nition multiset-of :: ′a set ⇒ ′a multiset wheremultiset-of S ≡ Abs-multiset (λx . if x ∈ S then 1 else 0 )74



endtheory PetriNetimports Main Multiset Drah�owToolsbegintypes ( ′e, ′a
t)petrinet-repr =
( ′e set)×( ′e set)×( ′e × ′e)set×( ′e ⇒ ′a
t)×( ′e set)×( ′a
t set)de�nition wellformed-petrinet :: ( ′e, ′a
t)petrinet-repr ⇒ bool wherewellformed-petrinet N ≡let (S , T , F , l , M 0, τSet) = N in (

(∀ s x . (s, x ) ∈ F ∧ s ∈ S −→ x ∈ T ) ∧
(∀ t x . (t , x ) ∈ F ∧ t ∈ T −→ x ∈ S ) ∧
¬(∃ x . x ∈ S ∩ T ) ∧
(∀ s. s ∈ M 0 −→ s ∈ S )
)typedef ( ′e, ′a
t)petrinet =

{N :: ( ′e, ′a
t)petrinet-repr . wellformed-petrinet N }apply (rule exI [where x = ({s}, {}, {}, (λs. a), {}, {})])by (simp add : Colle
tI wellformed-petrinet-def Let-def )de�nition pla
es :: ( ′e, ′a
t)petrinet ⇒ ′e setwhere pla
es N ≡ fst (Rep-petrinet N )de�nition transitions :: ( ′e, ′a
t)petrinet ⇒ ′e setwhere transitions N ≡ fst (snd (Rep-petrinet N ))de�nition label :: ( ′e, ′a
t)petrinet ⇒ ( ′e ⇒ ′a
t)where label N ≡ fst (snd (snd (snd (Rep-petrinet N ))))de�nition �ow :: ( ′e, ′a
t)petrinet ⇒ ( ′e× ′e) setwhere �ow N ≡ fst (snd (snd (Rep-petrinet N )))de�nition initial :: ( ′e, ′a
t)petrinet ⇒ ( ′e set)where initial N ≡ fst (snd (snd (snd (snd (Rep-petrinet N )))))de�nition silent ::
( ′e, ′a
t)petrinet ⇒ ′a
t setwhere silent N ≡ snd (snd (snd (snd (snd (Rep-petrinet N )))))de�nition stati
 ::
( ′e, ′a
t)petrinet ⇒ ( ′e set)×( ′e set)×(( ′e× ′e)set)×( ′e ⇒ ′a
t)wherestati
 N ≡ let (S , T , F , l , M 0, τSet) = Rep-petrinet N in (S , T , F , l)de�nition Net ::
( ′e set)×( ′e set)×(( ′e× ′e)set)×( ′e ⇒ ′a
t)×( ′e set)×( ′a
t set) ⇒

( ′e, ′a
t)petrinetwhere [simp]: Net tuple = Abs-petrinet tuple
75



A Appendixde�nition preset ::
( ′e, ′a
t)petrinet ⇒ ′e ⇒ ′e setwhere preset N x ≡ {y . (y , x ) ∈ �ow N }de�nition postset ::
( ′e, ′a
t) petrinet ⇒ ′e ⇒ ′e setwhere postset N x ≡ {y . (x , y) ∈ �ow N }de�nition presetSet ::
( ′e, ′a
t)petrinet ⇒ ′e set ⇒ ′e setwhere presetSet N X ≡ {y . ∃ x ∈ X . (y , x ) ∈ �ow N }de�nition postsetSet ::
( ′e, ′a
t)petrinet ⇒ ′e set ⇒ ′e setwhere postsetSet N X ≡ {y . ∃ x ∈ X . (x , y) ∈ �ow N }de�nition step ::
( ′e, ′a
t)petrinet ⇒ ′e set ⇒ ′e set ⇒ ′e set ⇒ boolwherestep N M 1 G M 2 ≡

(G ⊆ transitions N ) ∧ G 6= {} ∧
(∀ t ∈ G . preset N t ⊆ M 1 ∧ (M 1 − preset N t) ∩ postset N t = {}) ∧
(∀ t ∈ G . ∀ u ∈ G . t 6= u −→preset N t ∩ preset N u = {} ∧ postset N t ∩ postset N u = {}) ∧
(M 2 = (M 1 − presetSet N G) ∪ postsetSet N G)indu
tive-set rea
hable :: ( ′e, ′a
t)petrinet ⇒ ( ′e set)setfor N :: ( ′e, ′a
t)petrinet whererea
hable-start : initial N ∈ rea
hable N

| rea
hable-step: [[M 1 ∈ rea
hable N ; ∃G . step N M 1 G M 2]] =⇒ M 2 ∈ rea
hable Nde�nition plain :: ( ′e, ′a
t)petrinet ⇒ bool whereplain N ≡ ∀ t ∈ transitions N . label N t /∈ silent N ∧
(∀ u ∈ transitions N . (label N t = label N u) −→ (t = u))de�nition τPlain :: ( ′e, ′a
t)petrinet ⇒ bool where

τPlain N ≡ ∀ t ∈ transitions N . ∀ u ∈ transitions N .label N t = label N u −→
(silent N (label N t)) ∨
(silent N (label N u)) ∨
(t = u)de�nition 
onta
tFree :: ( ′e, ′a
t)petrinet ⇒ bool where
onta
tFree N ≡

∀M ∈ rea
hable N . ∀ t ∈ transitions N . preset N t ⊆ M −→
(M − preset N t) ∩ postset N t = {}de�nition 
onta
tFreeStep ::

( ′e, ′a
t)petrinet ⇒ ′e set ⇒ ′e set ⇒ ′e set ⇒ bool76



where
onta
tFreeStep N M 1 G M 2 ≡
(G ⊆ transitions N ) ∧ G 6= {} ∧
(∀ t ∈ G . preset N t ⊆ M 1) ∧
(∀ t ∈ G . ∀ u ∈ G . t 6= u −→ preset N t ∩ preset N u = {}) ∧
(M 2 = (M 1 − presetSet N G) ∪ postsetSet N G)lemma stepImplConta
tFreeStep: [[step N M 1 G M 2]] =⇒ 
onta
tFreeStep N M 1 G M 2by (simp add : 
onta
tFreeStep-def step-def )lemma 
onta
tFreeStep-lemma1 :

[[(M − PreT ) ∩ PostT = {}; PreT ⊆ M ; PreU ⊆ M ; PreT ∩ PreU = {}]] =⇒PostT ∩ PreU = {}by blastlemma 
onta
tFreeStepValid :
[[
onta
tFree N ; M 1 ∈ rea
hable N ; 
onta
tFreeStep N M 1 G M 2]] =⇒ step N M 1 G M 2apply (unfold 
onta
tFree-def , unfold 
onta
tFreeStep-def )apply (subgoal-ta
 ∀ t ∈ transitions N . preset N t ⊆ M 1 −→

(M 1 − preset N t) ∩ postset N t = {})prefer 2 apply blastapply (unfold step-def )apply (rule 
onjI , blast)apply (rule 
onjI , blast)apply (rule 
onjI , rule ballI )apply (rule 
onjI , blast)apply (erule 
onjE )+apply (subgoal-ta
 t ∈ transitions N , simp)apply (rule set-mp[where A = G ], assumption+)apply (rule 
onjI )prefer 2 apply simpapply (rule ballI )+apply (rule impI , rule 
onjI , simp)The interesting part of the proof follows.apply (erule 
onjE )+apply (subgoal-ta
 step N M 1 {t} (M 1 − preset N t ∪ postset N t))prefer 2apply (unfold step-def )[1 ]apply (rule 
onjI , blast)apply (rule 
onjI , blast)apply (rule 
onjI , simp)apply (erule ballE-in[where x = M 1], assumption)apply (subgoal-ta
 t ∈ transitions N , simp)apply (rule set-mp[where B = transitions N and A = G ], assumption+)apply (simp add : presetSet-def postsetSet-def preset-def postset-def )
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A Appendixapply (subgoal-ta
 (M 1 − preset N t ∪ postset N t) ∈ rea
hable N )prefer 2apply (rule rea
hable-step[where M 1 = M 1], assumption)apply blastapply (thin-ta
 G 6= {})apply (thin-ta
 step N M 1 {t} (M 1 − preset N t ∪ postset N t))apply (thin-ta
 M 2 = M 1 − presetSet N G ∪ postsetSet N G)apply (subgoal-ta
 ((M 1 − preset N t ∪ postset N t) − preset N u) ∩ postset N u = {})apply (rule-ta
 A = (M 1 − preset N t ∪ postset N t) − preset N u and B = postset N uand C = postset N t in noInterse
tion-superset , assumption)apply (subgoal-ta
 postset N t ∩ preset N u = {})apply (rule-ta
 A = postset N t and B = preset N u in noInterse
tion-subsetDi� ,assumption)apply blastapply (subgoal-ta
 preset N u ⊆ M 1 − preset N t)apply (erule-ta
 x = t and Q = λt . ∀ u∈G . t 6= u −→ preset N t ∩ preset N u = {}in ballE-in, assumption)apply (erule-ta
 x = u and Q = λu. t 6= u −→ preset N t ∩ preset N u = {}in ballE-in, assumption)apply (erule impE , assumption)apply (rule-ta
 M = M 1 and PreT = preset N t in 
onta
tFreeStep-lemma1 )apply (erule-ta
 x = t and A = transitions N in ballE-in, blast)apply (erule-ta
 x = t and A = G in ballE-in, blast)apply blastapply (erule-ta
 x = t and A = G in ballE-in, simp)apply assumptionapply (erule-ta
 x = u and A = G in ballE-in, simp)apply assumptionapply assumptionapply (thin-ta
 M 1 ∈ rea
hable N )apply (thin-ta
 ∀M∈rea
hable N . ∀ t∈transitions N . preset N t ⊆ M −→
(M − preset N t) ∩ postset N t = {})apply (thin-ta
 ∀ t∈transitions N . preset N t ⊆ M 1 −→
(M 1 − preset N t) ∩ postset N t = {})apply blastapply (subgoal-ta
 preset N u ⊆ (M 1 − preset N t ∪ postset N t))apply (erule-ta
 x = (M 1 − preset N t ∪ postset N t) in ballE-in, assumption)apply (erule-ta
 x = u andQ = λu. preset N u ⊆ M 1 − preset N t ∪ postset N t −→

((M 1 − preset N t ∪ postset N t) − preset N u) ∩ postset N u = {}in ballE-in, blast)apply (erule impE , assumption)apply assumption
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apply (thin-ta
 ∀M∈rea
hable N . ∀ t∈transitions N . preset N t ⊆ M −→
(M − preset N t) ∩ postset N t = {})apply (thin-ta
 ∀ t∈transitions N . preset N t ⊆ M 1 −→ (M 1 − preset N t) ∩ postset N t = {})apply (erule-ta
 x = t and Q = λt . ∀ u∈G . t 6= u −→ preset N t ∩ preset N u = {}in ballE-in, assumption)apply (erule-ta
 x = u and Q = λu. t 6= u −→ preset N t ∩ preset N u = {}in ballE-in, assumption)by blastlemma 
onta
tFreeStepEquiv :

[[
onta
tFree N ; M 1 ∈ rea
hable N ]] =⇒ step N M 1 G M 2 = 
onta
tFreeStep N M 1 G M 2by (rule i�I , simp add : stepImplConta
tFreeStep, simp add : 
onta
tFreeStepValid)de�nition �nitelyMarked :: ( ′e, ′a
t)petrinet ⇒ bool where�nitelyMarked N ≡�nite (initial N ) ∧
(∀ t ∈ transitions N . ∃ s ∈ pla
es N . (s, t) ∈ �ow N ) ∧
(∀ t ∈ transitions N . �nite (postset N t))lemma �niteStepImplFinitePostSet [intro]:

[[∀ t ∈ G . �nite (postset N t); �nite G ; G ⊆ transitions N ]] =⇒ �nite (postsetSet N G)apply (simp add : postsetSet-def )apply (subgoal-ta
 {y . ∃ x∈G . (x , y) ∈ �ow N } = (
⋃ t ∈ G . postset N t))prefer 2 apply (simp add : postset-def , blast)apply (erule-ta
 s = (

⋃ t ∈ G . postset N t) and t = {y . ∃ x∈G . (x , y) ∈ �ow N } in ssubst)by simplemma �nitelyMarkedEverywhere: [[�nitelyMarked N ; M ∈ rea
hable N ]] =⇒ �nite Mapply (unfold �nitelyMarked-def )apply (erule rea
hable.indu
t , simp)apply (erule exE )apply (subgoal-ta
 �nite G)apply (simp add : step-def )apply (erule 
onjE )+apply (rule-ta
 N = N and G = G in �niteStepImplFinitePostSet)apply blastapply assumptionapply assumptionapply (simp add : step-def )apply (erule 
onjE )+apply (thin-ta
 M 1 ∈ rea
hable N )apply (thin-ta
 �nite (initial N ))apply (thin-ta
 M 2 = M 1 − presetSet N G ∪ postsetSet N G)apply (thin-ta
 G 6= {})apply (thin-ta
 ∀ t∈transitions N . �nite (postset N t))
79



A Appendixapply (rule-ta
 f = λt . SOME s. (s, t) ∈ �ow N in �nite-imageD)apply (subgoal-ta
 ((λt . SOME s. (s, t) ∈ �ow N ) ` G) ⊆ M 1)apply (erule-ta
 A = (λt . SOME s. (s, t) ∈ �ow N ) ` G and B = M 1 in �nite-subset)apply assumptionapply (thin-ta
 �nite M 1)apply (rule subsetI )apply 
larifyapply (erule-ta
 A = G and x = t in ballE-in, assumption)apply (erule 
onjE )+apply (simp add : preset-def )apply (rule-ta
 Q = λx . x ∈ M 1 in someI2-ex )apply (erule-ta
 x = t and A = transitions N in ballE-in, blast)apply blastapply blastapply (rule inj-onI , rename-ta
 t u)apply (rule dire
tContradi
tion)apply (erule-ta
 x = t and y = u in ballE-in-double, assumption+)apply (erule impE , assumption, erule 
onjE )apply (frule-ta
 x = t and A = transitions N and P = λt . ∃ s ∈ pla
es N . (s, t) ∈ �ow Nin ballE-in, blast , assumption)apply (frule-ta
 x = u and A = transitions N and P = λu. ∃ s ∈ pla
es N . (s, u) ∈ �ow Nin ballE-in, blast , assumption)apply (frule-ta
 A = pla
es N and P = λs. (s, t) ∈ �ow N in bexToEx )apply (frule-ta
 A = pla
es N and P = λs. (s, u) ∈ �ow N in bexToEx )apply (frule-ta
 P = λs. (s, t) ∈ �ow N and Q = λs. (s, u) ∈ �ow Nin some-
onne
t , assumption+)apply (simp add : preset-def )by blastde�nition distributed N ≡
∃ 
olo
. (∀ t ∈ transitions N . ∀ s ∈ preset N t . 
olo
 s t) ∧

(∀ t u M 1 G M 2. (rea
hable N M 1 ∧ t ∈ G ∧ u ∈ G ∧ step N M 1 G M 2) −→ ¬ 
olo
 t u)lemma distributed-by-mapping :
∃ lo
. (∀ t ∈ transitions N . ∀ s ∈ preset N t . lo
 s = lo
 t) ∧

(∀ t u M 1 G M 2. (rea
hable N M 1 ∧ t ∈ G ∧ u ∈ G ∧ step N M 1 G M 2) −→lo
 t 6= lo
 u) =⇒ distributed Napply (simp add : distributed-def )by (erule exE , rule-ta
 x = λx y . lo
 x = lo
 y in exI )de�nition stepTra
es N ≡
{Tra
e. ∃Gs Ms. foldl (λt (M 1, G , M 2). t ∧ step N M 1 G M 2) True

(zip (initial N # Ms) (zip Gs Ms)) ∧Tra
e = map (λG . Abs-multiset (λa. 
ard {t ∈ G . label N t = a ∧ a /∈ silent N })) Gs}de�nition plainify :: ( ′e, ′a
t)petrinet ⇒ ( ′e, ′e)petrinet80



where plainify N ≡ Abs-petrinet ((pla
es N ), (transitions N ), (�ow N ), id , (initial N ), {})lemma petrinet .a

ess:shows [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒pla
es (Abs-petrinet (S , T , F , l , M 0, τSet)) = Sand [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒transitions (Abs-petrinet (S , T , F , l , M 0, τSet)) = Tand [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒�ow (Abs-petrinet (S , T , F , l , M 0, τSet)) = Fand [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒label (Abs-petrinet (S , T , F , l , M 0, τSet)) = land [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒initial (Abs-petrinet (S , T , F , l , M 0, τSet)) = M 0and [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒silent (Abs-petrinet (S , T , F , l , M 0, τSet)) = τSetby (
(simp add : pla
es-def transitions-def �ow-def label-def initial-def silent-def ),
(subgoal-ta
 Rep-petrinet (Abs-petrinet (S , T , F , l , M 0, τSet)) = (S , T , F , l , M 0, τSet),simp),
(blast intro: Abs-petrinet-inverse)

)+lemma petrinet .unfold-raw :
[[(S , T , F , l , M 0, τSet) = Rep-petrinet N ;

(S , T , F , l , M 0, τSet) ∈ petrinet =⇒ P (Abs-petrinet (S , T , F , l , M 0, τSet))]] =⇒ P Napply (subgoal-ta
 (S , T , F , l , M 0, τSet) ∈ petrinet)apply (subgoal-ta
 P (Abs-petrinet (S , T , F , l , M 0, τSet)))apply (simp add : Rep-petrinet-inverse)apply blastby (erule ssubst , rule Rep-petrinet)lemma petrinet .unfold :
[[(pla
es N , transitions N , �ow N , label N , initial N , silent N ) ∈ petrinet =⇒P (Abs-petrinet (pla
es N , transitions N , �ow N , label N , initial N , silent N ))]]
=⇒ P Napply (rule-ta
 S = pla
es N and T = transitions N and F = �ow N and l = label Nand M 0 = initial N and τSet = silent N in petrinet .unfold-raw)apply (simp add : petrinet-def pla
es-def transitions-def �ow-def label-def initial-def silent-def )by blastlemma plainify-su

essful-raw [intro!]:
[[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒ plain (plainify (Abs-petrinet (S , T , F , l , M 0, τSet)))apply (simp add : plain-def plainify-def )apply (subgoal-ta
 (S , T , F , id , M 0, {}) ∈ petrinet , simp add : petrinet .a

ess)apply (simp add : petrinet-def )apply (unfold wellformed-petrinet-def )apply (simp only : Let-def ) 81



A Appendixby blastlemma plainify-su

essful [intro!]: plain (plainify N )apply (rule-ta
 N = N in petrinet .unfold)by blastendtheory AsynFSMimports Main Multiset Drah�owToolsbegintypedef ( ′a
t)a
tsig =
{Σ :: ( ′a
t set)×( ′a
t set)×( ′a
t set).let (Σi , Σo, Στ) = Σ in Σi ∩ Σo = {} ∧ Σi ∩ Στ = {} ∧ Σo ∩ Στ = {}}apply (rule exI [where x = ({}, {}, {})])by simpde�nition input :: ( ′a
t)a
tsig ⇒ ′a
t set where input Σ ≡ fst (Rep-a
tsig Σ)de�nition output :: ( ′a
t)a
tsig ⇒ ′a
t set where output Σ ≡ fst (snd (Rep-a
tsig Σ))de�nition inner :: ( ′a
t)a
tsig ⇒ ′a
t set where inner Σ ≡ snd (snd (Rep-a
tsig Σ))lemma a
tsig .unfold-raw :
[[(In, Out , Inner) = Rep-a
tsig Σ;

(In, Out , Inner) ∈ a
tsig =⇒ P (Abs-a
tsig (In, Out , Inner))]] =⇒ P Σapply (subgoal-ta
 (In, Out , Inner) ∈ a
tsig)apply (subgoal-ta
 P (Abs-a
tsig (In, Out , Inner)))apply (simp add : Rep-a
tsig-inverse)apply blastby (erule ssubst , rule Rep-a
tsig)lemma a
tsig .unfold :
[[(input Σ, output Σ, inner Σ) ∈ a
tsig =⇒ P (Abs-a
tsig (input Σ, output Σ, inner Σ))]]
=⇒ P Σapply (rule-ta
 In = input Σ and Out = output Σ and Inner = inner Σ in a
tsig .unfold-raw)apply (simp add : a
tsig-def input-def output-def inner-def )by blastlemma input-a

ess [simp]:

(In, Out , Inner) ∈ a
tsig =⇒ input (Abs-a
tsig (In, Out , Inner)) = Inapply (simp add : input-def )apply (subgoal-ta
 Rep-a
tsig (Abs-a
tsig (In, Out , Inner)) = (In, Out , Inner), simp)by (blast intro: Abs-a
tsig-inverse)lemma output-a

ess [simp]:
(In, Out , Inner) ∈ a
tsig =⇒ output (Abs-a
tsig (In, Out , Inner)) = Outapply (simp add : output-def )82



apply (subgoal-ta
 Rep-a
tsig (Abs-a
tsig (In, Out , Inner)) = (In, Out , Inner), simp)by (blast intro: Abs-a
tsig-inverse)lemma inner-a

ess [simp]:
(In, Out , Inner) ∈ a
tsig =⇒ inner (Abs-a
tsig (In, Out , Inner)) = Innerapply (simp add : inner-def )apply (subgoal-ta
 Rep-a
tsig (Abs-a
tsig (In, Out , Inner)) = (In, Out , Inner), simp)by (blast intro: Abs-a
tsig-inverse)typedef ( ′q , ′a
t)asynfsm =
{A :: ( ′a
t a
tsig)×( ′q set)×( ′q)×(( ′q×( ′a
t set)×( ′a
t set)× ′q)set).let (Σ, Q , q0, stepRel) = A in (q0 ∈ Q ∧ (∀ (q , In, Out , q ′) ∈ stepRel . In 6= {} ∧q ∈ Q ∧ q ′ ∈ Q ∧ Out ⊆ output Σ ∧ In ⊆ (input Σ ∪ inner Σ)))}apply (rule exI [where x = let q = (SOME x . True) in (Abs-a
tsig ({}, {}, {}), {q}, q , {})])by (simp add : Let-def )de�nition a
tions :: ( ′q , ′a
t)asynfsm ⇒ ( ′a
t a
tsig) where a
tions A ≡ fst (Rep-asynfsm A)de�nition states :: ( ′q , ′a
t)asynfsm ⇒ ( ′q set) where states A ≡ fst (snd (Rep-asynfsm A))de�nition initial :: ( ′q , ′a
t)asynfsm ⇒ ′q where initial A ≡ fst (snd (snd (Rep-asynfsm A)))de�nition steps :: ( ′q , ′a
t)asynfsm ⇒ (( ′q×( ′a
t set)×( ′a
t set)× ′q)set)where steps A = snd (snd (snd (Rep-asynfsm A)))lemma asynfsm.unfold-raw :
[[(Σ, Q , q0, stepRel) = Rep-asynfsm A;

(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ P (Abs-asynfsm (Σ, Q , q0, stepRel))]] =⇒ P Aapply (subgoal-ta
 (Σ, Q , q0, stepRel) ∈ asynfsm)apply (subgoal-ta
 P (Abs-asynfsm (Σ, Q , q0, stepRel)))apply (simp add : Rep-asynfsm-inverse)apply blastby (erule ssubst , rule Rep-asynfsm)lemma asynfsm.unfold :
[[(a
tions A, states A, initial A, steps A) ∈ asynfsm =⇒P (Abs-asynfsm (a
tions A, states A, initial A, steps A))]] =⇒ P Aapply (rule-ta
 Σ = a
tions A and Q = states A and q0 = initial Aand stepRel = steps A in asynfsm.unfold-raw)apply (simp add : asynfsm-def a
tions-def states-def initial-def steps-def )by blastde�nition step :: ( ′q , ′a
t)asynfsm ⇒ ′q ⇒ ( ′a
t set) ⇒ ( ′a
t set) ⇒ ′q ⇒ boolwhere step A q In Out q ′ ≡ (q , In, Out , q ′) ∈ steps Alemma a
tions-a

ess [simp]:
(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ a
tions (Abs-asynfsm (Σ, Q , q0, stepRel)) = Σapply (simp add : a
tions-def )apply (subgoal-ta
 Rep-asynfsm (Abs-asynfsm (Σ, Q , q0, stepRel)) = (Σ, Q , q0, stepRel), simp)by (blast intro: Abs-asynfsm-inverse) 83



A Appendixlemma states-a

ess [simp]:
(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ states (Abs-asynfsm (Σ, Q , q0, stepRel)) = Qapply (simp add : states-def )apply (subgoal-ta
 Rep-asynfsm (Abs-asynfsm (Σ, Q , q0, stepRel)) = (Σ, Q , q0, stepRel), simp)by (blast intro: Abs-asynfsm-inverse)lemma initial-a

ess [simp]:
(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ initial (Abs-asynfsm (Σ, Q , q0, stepRel)) = q0apply (simp add : initial-def )apply (subgoal-ta
 Rep-asynfsm (Abs-asynfsm (Σ, Q , q0, stepRel)) = (Σ, Q , q0, stepRel), simp)by (blast intro: Abs-asynfsm-inverse)lemma steps-a

ess [simp]:
(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ steps (Abs-asynfsm (Σ, Q , q0, stepRel)) = stepRelapply (simp add : steps-def )apply (subgoal-ta
 Rep-asynfsm (Abs-asynfsm (Σ, Q , q0, stepRel)) = (Σ, Q , q0, stepRel), simp)by (blast intro: Abs-asynfsm-inverse)lemma initial-in-states [intro]: initial A ∈ states Aapply (simp add : initial-def states-def )apply (subgoal-ta
 Rep-asynfsm A ∈ asynfsm)prefer 2 apply (rule Rep-asynfsm)by (
larsimp simp: asynfsm-def )lemma nothing-in-emptyset : A = {} =⇒ y /∈ A by blastlemma step-respe
ts-signature [rule-format ]:shows step A q1 In Out q2 −→ Out ⊆ output (a
tions A)and step A q1 In Out q2 −→ In ⊆ (input (a
tions A)) ∪ (inner (a
tions A))and step A q1 In Out q2 −→ In ∩ output (a
tions A) = {}and step A q1 In Out q2 −→ Out ∩ ((input (a
tions A)) ∪ (inner (a
tions A))) = {}apply su

eedapply (rule asynfsm.unfold)apply (
larsimp simp: step-def steps-a

ess a
tions-a

ess)apply (unfold asynfsm-def , 
larsimp)apply (erule-ta
 x = (q1, In, Out , q2) in ballE-in, assumption, blast)apply (rule asynfsm.unfold)apply (
larsimp simp: step-def steps-a

ess a
tions-a

ess)apply (unfold asynfsm-def , 
larsimp)apply (erule-ta
 x = (q1, In, Out , q2) in ballE-in, assumption, blast)apply (rule asynfsm.unfold)apply (
larsimp simp: step-def steps-a

ess a
tions-a

ess)apply (unfold asynfsm-def , 
larsimp)apply (erule-ta
 x = (q1, In, Out , q2) in ballE-in, assumption, 
larsimp)apply (rule a
tsig .unfold)apply (subst output-a

ess, assumption)84



apply (unfold a
tsig-def )apply (
larsimp, rule equals0I , (drule-ta
 y = y in nothing-in-emptyset)+, blast)apply (rule asynfsm.unfold)apply (
larsimp simp: step-def steps-a

ess a
tions-a

ess)apply (unfold asynfsm-def , 
larsimp)apply (erule-ta
 x = (q1, In, Out , q2) in ballE-in, assumption, 
larsimp)apply (rule a
tsig .unfold)apply (subst input-a

ess, assumption)apply (subst inner-a

ess, assumption)apply (unfold a
tsig-def )by (
larsimp, rule equals0I , (drule-ta
 y = y in nothing-in-emptyset)+, blast)de�nition serial :: ( ′q , ′a
t)asynfsm ⇒ boolwhere serial A ≡ ∀ q . ∀ In. ∀Out . ∀ q ′. step A q In Out q ′ −→ (∃ x . In = {x})de�nition deterministi
 :: ( ′q , ′a
t)asynfsm ⇒ boolwhere deterministi
 A ≡ ∀ q . ∀ In. ∃ !Out . ∃ !q ′. step A q In Out q ′de�nition isomorphi
 :: ( ′q1,
′a
t)asynfsm ⇒ ( ′q2,

′a
t)asynfsm ⇒ boolwhere isomorphi
 A B ≡ a
tions A = a
tions B ∧ (∃ϕ. ϕ (initial A) = initial B ∧
(∀ q . ∀ In. ∀Out . ∀ q ′. step A q In Out q ′ = step B (ϕ q) In Out (ϕ q ′)))de�nition mat
h :: ′a
t a
tsig ⇒ ′a
t a
tsig ⇒ boolwhere mat
h Σ Σ ′ ≡ input Σ ∩ input Σ ′ = {} ∧output Σ ∩ output Σ ′ = {} ∧

(input Σ ∪ output Σ ∪ inner Σ) ∩ inner Σ ′ = {} ∧
(input Σ ′ ∪ output Σ ′ ∪ inner Σ ′) ∩ inner Σ = {}lemma impIfalse: ¬P =⇒ P −→ Q by blastde�nition set-aggr-�lter where set-aggr-�lter F L ≡ foldl (λSum S . Sum ∪ (S ∩ F )) {} Llemma set-aggr-�lter .lemma1 : a ∩ F = a ∩ F ∪ {} ∩ F by blastlemma set-aggr-�lter .absorb [simp]: set-aggr-�lter F list ∩ F = set-aggr-�lter F listapply (simp add : set-aggr-�lter-def )apply (indu
t-ta
 list , simp)apply simpapply (subgoal-ta
 foldl (λSum S . Sum ∪ S ∩ F ) (a ∩ F ∪ {} ∩ F ) list =a ∩ F ∪ foldl (λSum S . Sum ∪ S ∩ F ) {} list ∩ F )prefer 2apply (rule semigroup-add .foldl-asso
)apply (simp add : semigroup-add-def , blast)apply (subst (3 ) set-aggr-�lter .lemma1 )by (simp, blast)lemma set-aggr-�lter .univ-is-union [simp]: set-aggr-�lter UNIV list = foldl op ∪ {} listby (simp add : set-aggr-�lter-def ) 85



A Appendixlemma set-aggr-�lter .asso
iative [simp]:shows set-aggr-�lter F (a # list) = (a ∩ F ) ∪ set-aggr-�lter F listand set-aggr-�lter F (list @ [a]) = (a ∩ F ) ∪ set-aggr-�lter F listapply su

eedapply (simp add : set-aggr-�lter-def )apply (subgoal-ta
 foldl (λSum S . Sum ∪ S ∩ F ) (a ∩ F ∪ {} ∩ F ) list =a ∩ F ∪ foldl (λSum S . Sum ∪ S ∩ F ) {} list ∩ F )prefer 2apply (rule semigroup-add .foldl-asso
)apply (simp add : semigroup-add-def , blast)apply (subst (2 ) set-aggr-�lter .lemma1 )apply (erule trans)apply (rule-ta
 f = λx . a ∩ F ∪ x in eq-
ong-fun-app)apply (fold set-aggr-�lter-def )apply (rule set-aggr-�lter .absorb)by (simp add : set-aggr-�lter-def , blast)lemma set-aggr-�lter .rev [simp]: set-aggr-�lter F (rev list) = set-aggr-�lter F listby (indu
t-ta
 list , simp-all add : set-aggr-�lter .asso
iative)lemma set-aggr-�lter .zero [simp]: set-aggr-�lter F [] = {}by (simp add : set-aggr-�lter-def )lemma set-aggr-�lter .addsub [rule-format ]:set-aggr-�lter Add List ⊆ P −→ set-aggr-�lter (P − M ) List ∩ Sub = {} −→set-aggr-�lter (P − M ) List = set-aggr-�lter ((Add ∪ P) − (Sub ∪ M )) Listapply (indu
t-ta
 List , simp)apply (rule impI )apply 
larsimpapply (subgoal-ta
 a ∩ (P − M ) = a ∩ ((Add ∪ P) − (M ∪ Sub)))apply blastby blastlemma set-aggr-�lter .subset-of-�lter [rule-format ]: set-aggr-�lter F List ⊆ Fapply (indu
t-ta
 List , simp)by bestsimpde�nition bool-and-map where bool-and-map f L ≡ foldl (λt e. t ∧ f e) True Llemma bool-and-map.asso
iative [simp]:shows bool-and-map f (a # List) = (f a ∧ bool-and-map f List)and bool-and-map f (List @ [a]) = (f a ∧ bool-and-map f List)apply su

eedapply (simp add : bool-and-map-def )apply (subgoal-ta
 foldl (λt e. t ∧ f e) (True ∧ f a) List =
(f a ∧ foldl (λt e. t ∧ f e) True List))86



prefer 2apply (indu
t-ta
 List , simp)apply 
larsimpapply (
ase-ta
 f aa)apply 
larsimpapply 
larsimpapply (subgoal-ta
 foldl (λt e. t ∧ f e) False list = False)apply blastapply (indu
t-ta
 list , simp)apply simpapply bestsimpby (simp add : bool-and-map-def , blast)lemma bool-and-map.absorb [simp]: bool-and-map f [] = Trueby (bestsimp simp: bool-and-map-def )lemma bool-and-map.every [intro,rule-format ]: bool-and-map f List −→ (∀ x ∈ set List . f x )apply (indu
t-ta
 List , simp add : bool-and-map-def )by simplemma bool-and-map.everyA: bool-and-map f List =⇒ ∀ x ∈ set List . f xapply (rule-ta
 P = bool-and-map f List and Q = ∀ x ∈ set List . f x in impE )by (blast intro: bool-and-map.every)+lemma bool-and-map.everyR [intro]: ∀ x ∈ set List . f x =⇒ bool-and-map f Listapply (rule-ta
 Q = bool-and-map f List and P = ∀ x ∈ set List . f x in impE )apply (indu
t-ta
 List , simp add : bool-and-map-def )by bestsimp+primre
 mat
hFSMList :: (( ′q , ′a
t)asynfsm)list ⇒ bool wheremat
hFSMList [] = True |mat
hFSMList (A # L) = (bool-and-map (λe. mat
h (a
tions A) (a
tions e)) L ∧mat
hFSMList L)de�nition asynCompositionRaw ::
(( ′q , ′a
t)asynfsm)list ⇒

(( ′a
t a
tsig) × ( ′q list × ′a
t multiset)set × ( ′q list × ′a
t multiset) ×
(( ′q list × ′a
t multiset) × ′a
t set × ′a
t set × ′q list × ′a
t multiset)set)where asynCompositionRaw L ≡let inputs = ((

⋃A ∈ set L. input (a
tions A)) − (
⋃A ∈ set L. output (a
tions A))) inlet outputs = ((

⋃A ∈ set L. output (a
tions A)) − (
⋃A ∈ set L. input (a
tions A))) inlet inners = ((

⋃A ∈ set L. inner (a
tions A)) ∪ (
⋃A ∈ set L. input (a
tions A) ∩

(
⋃A ∈ set L. output (a
tions A)))) inlet Q = ((list-times-
ompr L (λA. states A)) × (powermultiset inners)) in

(
(Abs-a
tsig (inputs, outputs, inners)),Q , 87



A Appendix
((map (λA. initial A) L), {#}),
{(q1, In, Out , q2). ∃ Inl . ∃Outl . let (ql1, msg1) = q1 in let (ql2, msg2) = q2 inbool-and-map (λ(qi1, ini , outi , qi2, Ai).

((step Ai qi1 ini outi qi2 ∧ multiset-of (ini ∩ input (a
tions Ai) ∩ inners) ⊆# msg1)
∨ (ini = {} ∧ outi = {} ∧ qi1 = qi2)))

(zip ql1 (zip Inl (zip Outl (zip ql2 L)))) ∧In = set-aggr-�lter (inputs ∪ inners) Inl ∧ In 6= {} ∧Out = set-aggr-�lter outputs Outl ∧msg2 = (msg1 − multiset-of In) + multiset-of (set-aggr-�lter inners Outl) ∧q1 ∈ Q ∧ q2 ∈ Q ∧length ql1 = length L ∧ length Inl = length L ∧ length Outl = length L ∧length ql2 = length L}
)de�nition asynComposition :: (( ′q , ′a
t)asynfsm)list ⇒ ( ′q list × ′a
t multiset , ′a
t)asynfsmwhere asynComposition L ≡ Abs-asynfsm (asynCompositionRaw L)lemma mat
hFSMList-no-
on�i
t-front [intro]:shows mat
hFSMList (A # list) =⇒

(input (a
tions A) ∩ (
⋃A ∈ set list . input (a
tions A))) = {}and mat
hFSMList (A # list) =⇒

(output (a
tions A) ∩ (
⋃A ∈ set list . output (a
tions A))) = {}and mat
hFSMList (A # list) =⇒

(inner (a
tions A) ∩ (
⋃A ∈ set list . input (a
tions A) ∪ output (a
tions A) ∪inner (a
tions A))) = {}and mat
hFSMList (A # list) =⇒

((input (a
tions A) ∪ output (a
tions A) ∪ inner (a
tions A)) ∩
(
⋃A ∈ set list . inner (a
tions A))) = {}apply su

eedapply (
larsimp simp: mat
hFSMList-def )apply (rule equals0I )apply 
larsimpapply (drule-ta
 List = list and f = λe. mat
h (a
tions A) (a
tions e) and x = Aain bool-and-map.every , assumption)apply (
larsimp simp: mat
h-def )apply blastapply (
larsimp simp: mat
hFSMList-def )apply (rule equals0I )apply 
larsimpapply (drule-ta
 List = list and f = λe. mat
h (a
tions A) (a
tions e) and x = Aain bool-and-map.every , assumption)apply (
larsimp simp: mat
h-def )apply blastapply (
larsimp simp: mat
hFSMList-def )apply (rule equals0I )apply 
larsimpapply (drule-ta
 List = list and f = λe. mat
h (a
tions A) (a
tions e) and x = Aa88



in bool-and-map.every , assumption)apply (
larsimp simp: mat
h-def )apply blastapply (
larsimp simp: mat
hFSMList-def )apply (rule equals0I )apply 
larsimpapply (drule-ta
 List = list and f = λe. mat
h (a
tions A) (a
tions e) and x = Aain bool-and-map.every , assumption)apply (
larsimp simp: mat
h-def )by blastlemma Union-Bun-distrib: (
⋃ a ∈ A. S a ∪ T a) = (

⋃ a ∈ A. S a) ∪ (
⋃ a ∈ A. T a) by blastlemma abstra
tion: [[

∧x . P x ]] =⇒ P xapply (erule-ta
 x = x in meta-allE )by assumptionlemma meta-abstra
tion: [[Q x ;
∧x . Q x =⇒ P x ]] =⇒ P xapply (erule-ta
 x = x in meta-allE )by blastlemma meta-abstra
tion6 :

[[Q a b 
 d e f ; ∧a b 
 d e f . Q a b 
 d e f =⇒ P a b 
 d e f ]] =⇒ P a b 
 d e fapply (erule-ta
 x = a in meta-allE )apply (erule-ta
 x = b in meta-allE )apply (erule-ta
 x = 
 in meta-allE )apply (erule-ta
 x = d in meta-allE )apply (erule-ta
 x = e in meta-allE )apply (erule-ta
 x = f in meta-allE )by blastlemma mat
hFSMList-produ
es-a
tsig-lemma2 : [[x ∈ A; x ∈ B ; A ∩ B = {}]] =⇒ Falseby blastlemma mat
hFSMList-produ
es-a
tsig-lemma1 :
[[(d − e) ∩ (e − d) = {}; (d − e) ∩ (f ∪ d ∩ e) = {} ∧ (e − d) ∩ (f ∪ d ∩ e) = {};a ∩ d = {}; b ∩ e = {} ∧ 
 ∩ (d ∪ e ∪ f ) = {}; (a ∪ b ∪ 
) ∩ f = {};a ∩ b = {}; a ∩ 
 = {}; b ∩ 
 = {}]] =⇒
(a ∪ d − (b ∪ e)) ∩ (b ∪ e − (a ∪ d)) =
{} ∧ (a ∪ d − (b ∪ e)) ∩ (
 ∪ f ∪ (a ∪ d) ∩ (b ∪ e)) = {} ∧

(b ∪ e − (a ∪ d)) ∩ (
 ∪ f ∪ (a ∪ d) ∩ (b ∪ e)) = {}by ((rule 
onjI )? , rule equals0I , ((drule-ta
 y = y in nothing-in-emptyset)+, blast))+lemma mat
hFSMList-produ
es-a
tsig [rule-format ]:mat
hFSMList L −→ (
(
⋃A∈set L. input (a
tions A)) − (

⋃A∈set L. output (a
tions A)),
(
⋃A∈set L. output (a
tions A)) − (

⋃A∈set L. input (a
tions A)),
(
⋃A∈set L. inner (a
tions A)) ∪ (

⋃A∈set L. input (a
tions A)) ∩ 89
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(
⋃A∈set L. output (a
tions A))

) ∈ a
tsigapply (indu
t-ta
 L, simp add : a
tsig-def )apply (rule impI )apply (insert mat
hFSMList-no-
on�i
t-front)apply (erule-ta
 x = a in meta-allE )+apply (erule-ta
 x = list in meta-allE )+apply (simp add : a
tsig-def )apply (insert Union-Bun-distrib)[1 ]apply (erule-ta
 x = set list in meta-allE )apply (erule-ta
 x = λa. (input (a
tions a) ∪ output (a
tions a)) in meta-allE )apply (erule-ta
 x = λa. inner (a
tions a) in meta-allE )apply simpapply (insert Union-Bun-distrib)[1 ]apply (erule-ta
 x = set list in meta-allE )apply (erule-ta
 x = λa. input (a
tions a) in meta-allE )apply (erule-ta
 x = λa. output (a
tions a) in meta-allE )apply simpapply (subgoal-ta
 input (a
tions a) ∩ output (a
tions a) = {} ∧input (a
tions a) ∩ inner (a
tions a) = {} ∧output (a
tions a) ∩ inner (a
tions a) = {})prefer 2apply (rule a
tsig .unfold)apply (for
e simp: a
tsig-def )apply (rule-ta
 a = input (a
tions a) andb = output (a
tions a) and
 = inner (a
tions a) andd =
⋃ a∈set list . input (a
tions a) ande =
⋃ a∈set list . output (a
tions a) andf =
⋃ a∈set list . inner (a
tions a) andQ = λa b 
 d e f . (d − e) ∩ (e − d) = {} ∧

(d − e) ∩ (f ∪ d ∩ e) = {} ∧ (e − d) ∩ (f ∪ d ∩ e) = {} ∧a ∩ d = {} ∧ b ∩ e = {} ∧ 
 ∩ (d ∪ e ∪ f ) = {} ∧
(a ∪ b ∪ 
) ∩ f = {} ∧a ∩ b = {} ∧ a ∩ 
 = {} ∧ b ∩ 
 = {} in meta-abstra
tion6 )apply simpapply (rename-ta
 Ai Ao Ainner Li Lo Linner)by (rule-ta
 a = Ai and b = Ao and 
 = Ainner and d = Li and e = Lo and f = Linnerin mat
hFSMList-produ
es-a
tsig-lemma1 , simp+)lemma asynCompositionValid [intro]: mat
hFSMList L =⇒ asynCompositionRaw L ∈ asynfsmapply (simp add : asynCompositionRaw-def asynfsm-def Let-def )90



apply (rule 
onjI )apply (simp add : list-times-
ompr-def )apply (indu
t-ta
 L, simp)apply (simp add : initial-in-states)apply (rule 
onjI )apply (simp add : powermultiset-def )apply (rule allI )+apply (rename-ta
 ql1 M 1 In Out ql2 M 2)apply (rule impI )apply ((erule exE )+, (erule 
onjE )+)apply ((rule 
onjI )? , assumption)+apply (rule 
onjI )apply (subst output-a

ess, fastsimp simp: mat
hFSMList-produ
es-a
tsig)apply (
larsimp simp: set-aggr-�lter .subset-of-�lter)apply (subst input-a

ess, fastsimp simp: mat
hFSMList-produ
es-a
tsig)apply (subst inner-a

ess, fastsimp simp: mat
hFSMList-produ
es-a
tsig)by (
larsimp simp: set-aggr-�lter .subset-of-�lter)lemma asynCompositionValidSubst [simp]:mat
hFSMList L =⇒Rep-asynfsm (Abs-asynfsm (asynCompositionRaw L)) = asynCompositionRaw Lby (bestsimp simp: Abs-asynfsm-inverse asynCompositionValid)lemma asynCompositionCommutative:
[[mat
hFSMList [A, B ]; mat
hFSMList [B , A]]] =⇒isomorphi
 (asynComposition [A, B ]) (asynComposition [B , A])apply (insert asynCompositionValid [where L = [A, B ]])apply (insert asynCompositionValid [where L = [B , A]])apply simpapply (unfold isomorphi
-def )apply (rule 
onjI )apply (simp add : asynComposition-def asynCompositionRaw-def Let-def )apply ((unfold mat
h-def )[1 ], (erule 
onjE )+)apply (subgoal-ta


(input (a
tions A) ∪ input (a
tions B) − (output (a
tions A) ∪ output (a
tions B))) =
(input (a
tions B) ∪ input (a
tions A) − (output (a
tions B) ∪ output (a
tions A))) ∧

(output (a
tions A) ∪ output (a
tions B) − (input (a
tions A) ∪ input (a
tions B))) =
(output (a
tions B) ∪ output (a
tions A) − (input (a
tions B) ∪ input (a
tions A))) ∧

(inner (a
tions A) ∪ inner (a
tions B) ∪ (input (a
tions A) ∪ input (a
tions B)) ∩
(output (a
tions A) ∪ output (a
tions B))) =

(inner (a
tions B) ∪ inner (a
tions A) ∪ (input (a
tions B) ∪ input (a
tions A)) ∩
(output (a
tions B) ∪ output (a
tions A))))apply ((erule 
onjE )+, simp)apply blastThe next line gives the a
tual mapping fun
tion. 91



A Appendixapply (rule-ta
 x = λ(L, M ). (rev L, M ) in exI )apply (simp add : split-def )apply (rule 
onjI )apply (simp add : asynComposition-def asynCompositionRaw-def Let-def )apply (rule allI )+apply (rename-ta
 ql1 M 1 In Out ql2 M 2)apply (simp add : asynComposition-def asynCompositionRaw-def Let-def step-def )apply (rule i�I )apply (erule exE )+apply (rule-ta
 x = rev Inl in exI )apply (rule-ta
 x = rev Outl in exI )The following organizes meaningful names for the 
omponents of the 
omposite lists and provesthat they indeed have length two.apply (subgoal-ta
 (∃ qla1 qlb1. ql1 = [qla1, qlb1]) ∧ (∃ Inla Inlb. Inl = [Inla, Inlb]) ∧
(∃Outla Outlb. Outl = [Outla, Outlb]) ∧ (∃ qla2 qlb2. ql2 = [qla2, qlb2]))prefer 2apply (subgoal-ta
 ql1 = [hd ql1, hd (tl ql1)] ∧ Inl = [hd Inl , hd (tl Inl)] ∧Outl = [hd Outl , hd (tl Outl)] ∧ ql2 = [hd ql2, hd (tl ql2)])prefer 2 apply ((erule 
onjE )+, ((rule 
onjI )? , simp add : list-�xlen-expl2 )+)[1 ]apply (erule 
onjE )+apply (rule 
onjI , rule-ta
 x = hd ql1 in exI , rule-ta
 x = hd (tl ql1) in exI , assumption)apply (rule 
onjI , rule-ta
 x = hd Inl in exI , rule-ta
 x = hd (tl Inl) in exI , assumption)apply (rule 
onjI , rule-ta
 x = hd Outl in exI , rule-ta
 x = hd (tl Outl) in exI , assumption)apply ( rule-ta
 x = hd ql2 in exI , rule-ta
 x = hd (tl ql2) in exI , assumption)apply (erule 
onjE )+apply (erule exE )+Main proof line 
ontinues below.apply (rule 
onjI , simp)apply (rule 
onjI )apply (
ase-ta
 Inlb = {}, for
e)apply (subst Un-
ommute[of inner (a
tions B) inner (a
tions A)])apply (subst Un-
ommute[of input (a
tions B) input (a
tions A)])apply (subst Un-
ommute[of output (a
tions B) output (a
tions A)])apply simpapply (
ase-ta
 Inla = {}, for
e)apply (subst Un-
ommute[of inner (a
tions B) inner (a
tions A)])apply (subst Un-
ommute[of input (a
tions B) input (a
tions A)])apply (subst Un-
ommute[of output (a
tions B) output (a
tions A)])apply simpapply (rule 
onjI , simp, blast)apply (rule 
onjI , assumption)apply (rule 
onjI , simp, blast)apply (rule 
onjI )apply simp92



apply (rule-ta
 f = Drah�owTools.multiset-of in eq-
ong-fun-app)apply blast

93



A Appendixapply (subgoal-ta

(inner (a
tions B) ∪ inner (a
tions A) ∪ (input (a
tions B) ∪ input (a
tions A)) ∩

(output (a
tions B) ∪ output (a
tions A))) =
(inner (a
tions A) ∪ inner (a
tions B) ∪ (input (a
tions A) ∪ input (a
tions B)) ∩

(output (a
tions A) ∪ output (a
tions B))))prefer 2 apply blastapply ((rule 
onjI )? , simp)+apply (erule exE )+apply (rule-ta
 x = rev Inl in exI )apply (rule-ta
 x = rev Outl in exI )The following organizes meaningful names for the 
omponents of the 
omposite lists and provesthat they indeed have length two.apply (subgoal-ta
 (∃ qla1 qlb1. ql1 = [qla1, qlb1]) ∧ (∃ Inla Inlb. Inl = [Inla, Inlb]) ∧
(∃Outla Outlb. Outl = [Outla, Outlb]) ∧ (∃ qla2 qlb2. ql2 = [qla2, qlb2]))prefer 2apply (subgoal-ta
 ql1 = [hd ql1, hd (tl ql1)] ∧ Inl = [hd Inl , hd (tl Inl)] ∧Outl = [hd Outl , hd (tl Outl)] ∧ ql2 = [hd ql2, hd (tl ql2)])prefer 2 apply ((erule 
onjE )+, ((rule 
onjI )? , simp add : list-�xlen-expl2 )+)[1 ]apply (erule 
onjE )+apply (rule 
onjI , rule-ta
 x = hd ql1 in exI , rule-ta
 x = hd (tl ql1) in exI , assumption)apply (rule 
onjI , rule-ta
 x = hd Inl in exI , rule-ta
 x = hd (tl Inl) in exI , assumption)apply (rule 
onjI , rule-ta
 x = hd Outl in exI , rule-ta
 x = hd (tl Outl) in exI , assumption)apply ( rule-ta
 x = hd ql2 in exI , rule-ta
 x = hd (tl ql2) in exI , assumption)apply (erule 
onjE )+apply (erule exE )+Main proof line 
ontinues below.apply (rule 
onjI )apply simpapply (rule 
onjI )apply (
ase-ta
 Inlb = {}, for
e)apply (subst Un-
ommute[of inner (a
tions A) inner (a
tions B)])apply (subst Un-
ommute[of input (a
tions A) input (a
tions B)])apply (subst Un-
ommute[of output (a
tions A) output (a
tions B)])apply simpapply (
ase-ta
 Inla = {}, for
e)apply (subst Un-
ommute[of inner (a
tions A) inner (a
tions B)])apply (subst Un-
ommute[of input (a
tions A) input (a
tions B)])apply (subst Un-
ommute[of output (a
tions A) output (a
tions B)])apply simpapply (rule 
onjI , simp, blast)apply (rule 
onjI , assumption)apply (rule 
onjI , simp, blast)94



apply (rule 
onjI )apply simpapply (rule-ta
 f = Drah�owTools.multiset-of in eq-
ong-fun-app)apply blastapply (subgoal-ta

(inner (a
tions B) ∪ inner (a
tions A) ∪ (input (a
tions B) ∪ input (a
tions A)) ∩

(output (a
tions B) ∪ output (a
tions A))) =
(inner (a
tions A) ∪ inner (a
tions B) ∪ (input (a
tions A) ∪ input (a
tions B)) ∩

(output (a
tions A) ∪ output (a
tions B))))prefer 2 apply blastby ((rule 
onjI )? , simp)+lemma mat
hFSMList .trivial [intro]: mat
hFSMList [] by simplemma mat
hFSMList .inherit [rule-format ]: mat
hFSMList (A # L) −→ mat
hFSMList Lby bestsimplemma set-aggr-�lter-asso
-�nite [intro,rule-format ]:
(∀ x ∈ set List . �nite x ) −→ �nite (set-aggr-�lter F List)apply (indu
t-ta
 List)apply (bestsimp simp: set-aggr-�lter-def )by simplemma step-not-empty [intro]: ¬ step A q1 {} Out q2by (for
e simp: step-def asynfsm-def intro: asynfsm.unfold)lemma list-times-
ompr-same-length [simp,rule-format ]:
∀ x . x ∈ list-times-
ompr L f −→ length x = length Lby (indu
t-ta
 L, simp+)lemma step-asyn-implies-length [simp]:shows [[mat
hFSMList L; step (asynComposition L) q1 In Out q2]] =⇒length (fst q1) = length Land [[mat
hFSMList L; step (asynComposition L) q1 In Out q2]] =⇒ length (fst q2) = length Lapply (simp add : step-def )apply (rule-ta
 A = (asynComposition L) in asynfsm.unfold)apply (simp add : asynfsm-def )apply (erule-ta
 
onjE )apply (erule-ta
 x = (q1, In, Out , q2) in ballE-in, assumption)apply 
larsimpapply (thin-ta
 Out ⊆ output (a
tions (asynComposition L)))apply (thin-ta
 In ⊆ input (a
tions (asynComposition L)) ∪inner (a
tions (asynComposition L)))apply (thin-ta
 In 6= {})apply (thin-ta
 initial (asynComposition L) ∈ states (asynComposition L))apply (thin-ta
 (q1, In, Out , q2) ∈ steps (asynComposition L))apply (thin-ta
 q2 ∈ states (asynComposition L))apply (drule-ta
 asynCompositionValid) 95



A Appendixapply (bestsimp simp: asynComposition-def asynCompositionRaw-def Let-def )apply (simp add : step-def )apply (rule-ta
 A = (asynComposition L) in asynfsm.unfold)apply (simp add : asynfsm-def )apply (erule-ta
 
onjE )apply (erule-ta
 x = (q1, In, Out , q2) in ballE-in, assumption)apply 
larsimpapply (thin-ta
 Out ⊆ output (a
tions (asynComposition L)))apply (thin-ta
 In ⊆ input (a
tions (asynComposition L)) ∪inner (a
tions (asynComposition L)))apply (thin-ta
 In 6= {})apply (thin-ta
 initial (asynComposition L) ∈ states (asynComposition L))apply (thin-ta
 (q1, In, Out , q2) ∈ steps (asynComposition L))apply (thin-ta
 q1 ∈ states (asynComposition L))apply (drule-ta
 asynCompositionValid)by (bestsimp simp: asynComposition-def asynCompositionRaw-def Let-def )lemma in-set-implies-index [intro,rule-format ]: x ∈ set L −→ (∃ i . L ! i = x ∧ i < length L)apply (indu
t-ta
 L)apply simpapply simpapply (rule 
onjI )apply (rule impI , rule-ta
 x = 0 in exI , simp)apply (rule impI )apply (erule-ta
 impE , assumption)apply (erule-ta
 exE )apply (rule-ta
 x = Su
 i in exI )by simplemma list-index-shift [intro,rule-format ]:
∀ i . i < Su
 (length list) −→ 0 < i −→ (a # list) ! i = list ! (i − 1 )apply (indu
t-ta
 list , simp)apply (rule allI )apply (
ase-ta
 i , simp)by simplemma mat
hFSMList-shared-same-index [intro,simp,rule-format ]:mat
hFSMList L −→ I 6= {} −→
(∀ i . i < length L −→ (∀ j . j < length L −→I ⊆ input (a
tions (L ! i)) ∪ inner (a
tions (L ! i)) −→I ⊆ input (a
tions (L ! j )) ∪ inner (a
tions (L ! j )) −→ i = j ))apply (indu
t-ta
 L, simp)apply 
larsimpapply (
ase-ta
 i = 0 )apply (
ase-ta
 j = 0 )apply blastapply (subgoal-ta
 (a # list) ! i = a)96



prefer 2 apply simpapply (frule-ta
 bool-and-map.everyA)apply (erule-ta
 x = list ! (j − 1 ) in ballE-in, simp)apply (unfold mat
h-def )[1 ]apply (subgoal-ta
 (a # list) ! j = list ! (j − 1 ))prefer 2 apply (erule list-index-shift , simp)apply 
larsimpapply (rule-ta
 a = input (a
tions a) and b = output (a
tions a) and 
 = inner (a
tions a)and d = input (a
tions (list ! (j − Su
 0 ))) and e = output (a
tions (list ! (j − Su
 0 )))and f = inner (a
tions (list ! (j − Su
 0 )))and Q = λa b 
 d e f . I 6= {} ∧ I ⊆ a ∪ 
 ∧ I ⊆ d ∪ f ∧ (a ∪ b ∪ 
) ∩ f = {} ∧
(d ∪ e ∪ f ) ∩ 
 = {} in meta-abstra
tion6 )apply blastapply (erule 
onjE )+apply (subgoal-ta
 I = {}, simp)apply (rule equals0I )apply (drule-ta
 y = y in nothing-in-emptyset)+apply blastapply (
ase-ta
 j = 0 )apply (subgoal-ta
 (a # list) ! j = a)prefer 2 apply simpapply (frule-ta
 bool-and-map.everyA)apply (erule-ta
 x = list ! (i − 1 ) in ballE-in, simp)apply (unfold mat
h-def )[1 ]apply (subgoal-ta
 (a # list) ! i = list ! (i − 1 ))prefer 2 apply (erule list-index-shift , simp)apply 
larsimpapply (rule-ta
 a = input (a
tions a) and b = output (a
tions a) and 
 = inner (a
tions a)and d = input (a
tions (list ! (i − Su
 0 ))) and e = output (a
tions (list ! (i − Su
 0 )))and f = inner (a
tions (list ! (i − Su
 0 )))and Q = λa b 
 d e f . I 6= {} ∧ I ⊆ a ∪ 
 ∧ I ⊆ d ∪ f ∧ (a ∪ b ∪ 
) ∩ f = {} ∧
(d ∪ e ∪ f ) ∩ 
 = {} in meta-abstra
tion6 )apply blastapply (erule 
onjE )+apply (subgoal-ta
 I = {}, simp)apply (rule equals0I )apply (drule-ta
 y = y in nothing-in-emptyset)+apply blastapply (erule-ta
 x = i − 1 in allE )apply (subgoal-ta
 i − 1 < length list)prefer 2 apply simpapply (erule-ta
 impE , assumption)apply (erule-ta
 x = j − 1 in allE )apply (subgoal-ta
 j − 1 < length list)prefer 2 apply simpapply (erule-ta
 impE , assumption)apply (subgoal-ta
 (a # list) ! i = list ! (i − 1 )) 97



A Appendixprefer 2 apply (erule list-index-shift , simp)apply (subgoal-ta
 (a # list) ! j = list ! (j − 1 ))prefer 2 apply (erule list-index-shift , simp)by simplemma disjE-ex
l1 : [[P ∨ Q ; [[P ; ¬ Q ]] =⇒ R; Q =⇒ R]] =⇒ R by blastlemma disjE-ex
l2 : [[P ∨ Q ; P =⇒ R; [[¬ P ; Q ]] =⇒ R]] =⇒ R by blastlemma step-asyn-implies-�nite [intro]:
[[mat
hFSMList L; step (asynComposition L) q1 In Out q2;

∧x . x ∈ set L =⇒ serial x ]]
=⇒ �nite Inapply (frule-ta
 asynCompositionValid)apply (
larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (rule set-aggr-�lter-asso
-�nite)apply (rename-ta
 Inputi)apply (
ase-ta
 Inputi = {}, blast)apply (drule-ta
 bool-and-map.everyA)apply (unfold serial-def )apply (fold step-def )apply (unfold set-zip)apply (rename-ta
 q1 M q2 Inputi)apply (subgoal-ta
 ∃ !i . i < length Inl ∧ Inl ! i = Inputi ∧step (L ! i) (q1 ! i) Inputi (Outl ! i) (q2 ! i))prefer 2apply (rule ex-ex1I )apply (drule-ta
 L = Inl in in-set-implies-index )apply (erule exE )apply (rule-ta
 x = i in exI )apply (rule 
onjI , simp)apply (rule 
onjI , simp)apply (erule-ta
 x = (q1 ! i , Inl ! i , Outl ! i , q2 ! i , L ! i) in ballE , bestsimp)apply (subgoal-ta
 (q1 ! i , Inl ! i , Outl ! i , q2 ! i , L ! i) ∈

{(q1 ! i , zip Inl (zip Outl (zip q2 L)) ! i) |i . i < min (length q1)(length (zip Inl (zip Outl (zip q2 L))))}, blast)apply (rule Colle
tI )apply (rule-ta
 x = i in exI )apply (rule 
onjI )apply (erule-ta
 
onjE )+apply (subst nth-zip, assumption, bestsimp)apply (subst nth-zip)apply (erule-ta
 t = length Outl and s = length L in ssubst)apply (erule-ta
 t = length L and s = length Inl in subst)apply assumptionapply (subgoal-ta
 length q2 = length L)apply (subst length-zip)98



apply (erule-ta
 t = length q2 in ssubst)apply (subst lower-semilatti
e-lo
ale.min-max .less-eq-less-inf .inf-idem)apply (erule-ta
 t = length L and s = length Inl in subst)apply assumptionapply (rule-ta
 f = states in list-times-
ompr-same-length)apply assumptionapply (subst nth-zip)apply (subgoal-ta
 length q2 = length L)apply (erule-ta
 t = length q2 and s = length L in ssubst)apply (erule-ta
 t = length L and s = length Inl in subst)apply assumptionapply (rule-ta
 f = states in list-times-
ompr-same-length)apply assumptionapply (erule-ta
 t = length L and s = length Inl in subst)apply assumptionapply (rule re�)apply bestsimpapply (rename-ta
 i j )apply (subgoal-ta
 Inputi ⊆ input (a
tions (L ! i)) ∪ inner (a
tions (L ! i)))apply (subgoal-ta
 Inputi ⊆ input (a
tions (L ! j )) ∪ inner (a
tions (L ! j )))apply (frule-ta
 L = L and I = Inputi and i = i and j = jin mat
hFSMList-shared-same-index )apply (simp)+apply (erule-ta
 
onjE )+apply (erule-ta
 step-respe
ts-signature)apply (erule-ta
 
onjE )+apply (erule-ta
 step-respe
ts-signature)apply (erule ex1E )apply (erule 
onjE )+apply (erule-ta
 x = L ! i in meta-allE )apply 
larsimpapply (erule-ta
 x = q1 ! iand P = λq . ∀ In. (∃Out . Ex (step (L ! i) q In Out)) −→ (∃ x . In = {x}) in allE )apply (erule-ta
 x = Inl ! iand P = λIn. (∃Out . Ex (step (L ! i) (q1 ! i) In Out)) −→ (∃ x . In = {x}) in allE )apply (subgoal-ta
 (∃Out . Ex (step (L ! i) (q1 ! i) (Inl ! i) Out)))apply simpapply (erule exE )+apply simpapply (rule-ta
 x = Outl ! i in exI )apply (rule-ta
 x = q2 ! i in exI )by assumptionlemma set-aggr-�lter .element-somewhere-in-list [rule-format ]:x ∈ set-aggr-�lter F L −→ (∃ i . x ∈ L ! i ∧ i < length L)apply (indu
t-ta
 L, simp add : set-aggr-�lter-def )apply 
larsimp 99



A Appendixapply (rule 
onjI )apply (rule impI )apply (rule-ta
 x = 0 in exI )apply simpapply (
ase-ta
 x ∈ set-aggr-�lter F list)apply 
larsimpapply (rule-ta
 x = Su
 i in exI )apply simpby simpde�nition sour
e-ma
hine L inp ≡
(THE i . inp ∈ input (a
tions (L ! i)) ∪ inner (a
tions (L ! i)) ∧ i < length L)lemma sour
e-ma
hine-input [intro]:

[[mat
hFSMList L; ∀A ∈ set L. serial A; step (asynComposition L) q1 In Out q2; inp ∈ In]]
=⇒ inp ∈ input (a
tions (L ! sour
e-ma
hine L inp)) ∪inner (a
tions (L ! sour
e-ma
hine L inp))apply (frule-ta
 asynCompositionValid)apply (
larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (drule-ta
 bool-and-map.everyA)apply (unfold set-zip)apply (rename-ta
 q1 M q2)apply (unfold sour
e-ma
hine-def )apply (subgoal-ta
 (λP . (λi . P i) (THE i . P i))

(λi . inp ∈ input (a
tions (L ! i)) ∪ inner (a
tions (L ! i)) ∧ i < length L), blast)apply (rule theI ′)apply (rule ex-ex1I )apply (drule-ta
 L = Inl in set-aggr-�lter .element-somewhere-in-list)apply (erule exE )apply (rule-ta
 x = i in exI )apply (erule-ta
 x = (q1 ! i , Inl ! i , Outl ! i , q2 ! i , L ! i) in ballE )apply 
larsimpapply (erule disjE )apply (erule 
onjE )apply (fold step-def )apply (drule-ta
 step-respe
ts-signature(2 ))apply blastapply blastapply (subgoal-ta
 (q1 ! i , Inl ! i , Outl ! i , q2 ! i , L ! i) ∈
{(q1 ! i , zip Inl (zip Outl (zip q2 L)) ! i) |i . i < min (length q1) (length (zip Inl (zip Outl (zip q2 L))))}, blast)apply (rule Colle
tI )apply (rule-ta
 x = i in exI )apply (rule 
onjI )apply (erule-ta
 
onjE )+100



apply (subst nth-zip, assumption, bestsimp)apply (subst nth-zip)apply (erule-ta
 t = length Outl and s = length L in ssubst)apply (erule-ta
 t = length L and s = length Inl in subst)apply assumptionapply (subgoal-ta
 length q2 = length L)apply (subst length-zip)apply (erule-ta
 t = length q2 in ssubst)apply (subst lower-semilatti
e-lo
ale.min-max .less-eq-less-inf .inf-idem)apply (erule-ta
 t = length L and s = length Inl in subst)apply assumptionapply (rule-ta
 f = states in list-times-
ompr-same-length)apply assumptionapply (subst nth-zip)apply (subgoal-ta
 length q2 = length L)apply (erule-ta
 t = length q2 and s = length L in ssubst)apply (erule-ta
 t = length L and s = length Inl in subst)apply assumptionapply (rule-ta
 f = states in list-times-
ompr-same-length)apply assumptionapply (erule-ta
 t = length L and s = length Inl in subst)apply assumptionapply (rule re�)apply bestsimpapply (rename-ta
 i j )apply (subgoal-ta
 {inp} ⊆ input (a
tions (L ! i)) ∪ inner (a
tions (L ! i)))apply (subgoal-ta
 {inp} ⊆ input (a
tions (L ! j )) ∪ inner (a
tions (L ! j )))apply (frule-ta
 L = L and I = {inp} and i = i and j = jin mat
hFSMList-shared-same-index )by (simp)+lemma sour
e-ma
hine-length [intro]:
[[mat
hFSMList L; ∀A ∈ set L. serial A; step (asynComposition L) q1 In Out q2; inp ∈ In]]
=⇒ sour
e-ma
hine L inp < length Lapply (simp add : sour
e-ma
hine-def )apply (subgoal-ta


(λi . (inp ∈ input (a
tions (L ! i)) ∨ inp ∈ inner (a
tions (L ! i))) ∧ i < length L)
(THE i . (inp ∈ input (a
tions (L ! i)) ∨ inp ∈ inner (a
tions (L ! i))) ∧ i < length L),for
e)apply (rule theI ′)apply (rule ex-ex1I )apply (frule-ta
 asynCompositionValid)apply (
larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (drule-ta
 set-aggr-�lter .element-somewhere-in-list)apply (erule-ta
 exE )apply (rule-ta
 x = i in exI ) 101



A Appendixapply simpapply (drule-ta
 bool-and-map.everyA)apply (rename-ta
 ql1 y ql2 i)apply (subgoal-ta
 (ql1 ! i , Inl ! i , Outl ! i , ql2 ! i , L ! i) ∈set (zip ql1 (zip Inl (zip Outl (zip ql2 L)))))apply (erule-ta
 x = (ql1 ! i , Inl ! i , Outl ! i , ql2 ! i , L ! i) in ballE-in)apply (simp add : split-def )apply (
ase-ta
 Inl ! i = {}, for
e)apply simpapply (erule 
onjE )+apply (fold step-def )apply (drule-ta
 step-respe
ts-signature(2 ))apply for
eapply (subst in-set-
onv-nth)apply (rule-ta
 x = i in exI )apply for
eby (rule-ta
 L = L and I = {inp} and i = x and j = yin mat
hFSMList-shared-same-index , for
e+)lemma set-aggr-�lter .empty-repli
ate [simp]: set-aggr-�lter F (repli
ate len {}) = {}by (indu
t len, simp+)lemma set-aggr-�lter .gobble-empty-repli
ate [simp,rule-format ]:i < len −→ set-aggr-�lter F (repli
ate len {}[i := L]) = set-aggr-�lter F [L]Aggregating arbitrary amounts of empty sets does not make any di�eren
e.by (rule proofHole[of ?thesis])lemma 
omposite-a
tions.fold :assumes mat
hFSMList Lshows (
⋃A ∈ set L. input (a
tions A)) − (

⋃A ∈ set L. output (a
tions A)) =input (a
tions (asynComposition L))and (
⋃A ∈ set L. output (a
tions A)) − (

⋃A ∈ set L. input (a
tions A)) =output (a
tions (asynComposition L))and (
⋃A ∈ set L. inner (a
tions A)) ∪ ((

⋃A ∈ set L. input (a
tions A)) ∩
(
⋃A ∈ set L. output (a
tions A))) = inner (a
tions (asynComposition L))apply su

eedapply (insert 〈mat
hFSMList L〉)apply (frule asynCompositionValid)apply (
larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (subst input-a

ess, rule mat
hFSMList-produ
es-a
tsig , assumption)apply (rule re�)apply (insert 〈mat
hFSMList L〉)apply (frule asynCompositionValid)apply (
larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)102



apply (subst output-a

ess, rule mat
hFSMList-produ
es-a
tsig , assumption)apply (rule re�)apply (insert 〈mat
hFSMList L〉)apply (frule asynCompositionValid)apply (
larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (subst inner-a

ess, rule mat
hFSMList-produ
es-a
tsig , assumption)by (rule re�)lemma 
omposite-statespa
e.fold :assumes mat
hFSMList Lshows (list-times-
ompr L (λA. states A) ×powermultiset ((
⋃A∈set L. inner (a
tions A)) ∪ (

⋃A∈set L. input (a
tions A)) ∩
(
⋃A∈set L. output (a
tions A)))) =states (asynComposition L)apply (insert 〈mat
hFSMList L〉)apply (frule asynCompositionValid)by (bestsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)lemma step-respe
ts-statespa
e [rule-format ]:shows step A q1 In Out q2 −→ q1 ∈ states Aand step A q1 In Out q2 −→ q2 ∈ states Aapply su

eedapply (rule asynfsm.unfold)apply (
larsimp simp: step-def steps-a

ess a
tions-a

ess)apply (unfold asynfsm-def , 
larsimp)apply (erule-ta
 x = (q1, In, Out , q2) in ballE-in, assumption, blast)apply (rule asynfsm.unfold)apply (
larsimp simp: step-def steps-a

ess a
tions-a

ess)apply (unfold asynfsm-def , 
larsimp)by (erule-ta
 x = (q1, In, Out , q2) in ballE-in, assumption, blast)lemma list-times-
ompr .arbitrary-merging-update [intro,rule-format ]:

[[length L1 = length L2; length L2 = length L3; i < length L1; L1 ∈ list-times-
ompr L3 f ;L2 ∈ list-times-
ompr L3 f ]] =⇒L1[i := L2 ! i ] ∈ list-times-
ompr L3 fConsider a 
ross-produ
t of length n of a list of sets. Now 
onsider two tuples t and s out ofthis 
ross-produ
t. Clearly swit
hing some 
omponents between s and t will still lead to tupleswithin the 
ross-produ
t.by (rule proofHole[of ?thesis])lemma powermultiset-in
ludes-subset :
[[A ∈ powermultiset S ; B ⊆# A]] =⇒ B ∈ powermultiset Sapply (simp add : powermultiset-def )apply (unfold set-of-def ) 103



A Appendixapply (subgoal-ta
 ∀ x . x ∈# B −→ x ∈ S , blast)apply (subgoal-ta
 ∀ x . x ∈# A −→ x ∈ S )prefer 2 apply blastapply (rule allI )apply (erule-ta
 x = x in allE )apply 
larsimpapply (subgoal-ta
 x ∈# A)apply blastapply (drule-ta
 x = x and A = B and B = A in mset-leD , assumption)by simplemma powermultiset-keeps-subset : [[A ⊆ B ]] =⇒ powermultiset A ⊆ powermultiset Bapply (simp add : powermultiset-def )apply (unfold set-of-def )by blastlemma powermultiset-
ontains-multiset-of :
[[A ⊆ B ]] =⇒ Drah�owTools.multiset-of A ∈ powermultiset BCompletely parallel to powersets.by (rule proofHole[of ?thesis])lemma powermultiset-two-elements-implies-union:
[[A ∈ powermultiset S ; B ∈ powermultiset S ]] =⇒ A + B ∈ powermultiset SCompletely parallel to powersets.by (rule proofHole[of ?thesis])lemma multiset-di�eren
e-subset-positive: A − S ⊆# Aby (rule proofHole[of ?thesis])lemma 
on�uen
e:assumes 
ompatibleMa
hines: mat
hFSMList Land serialMa
hines: ∀A ∈ set L. serial Aand parallelStep: step (asynComposition L) (ql1, M 1) In Out (ql3, M 3)and singleA
tion: i ∈ Inshows
∃Outi ql2 M 2. step (asynComposition L) (ql1, M 1) {i} Outi (ql2, M 2) ∧
(In = {i} ∨ step (asynComposition L) (ql2, M 2) (In − {i}) (Out − Outi) (ql3, M 3))proof −from 
ompatibleMa
hines have validComposition: asynCompositionRaw L ∈ asynfsmby (rule asynCompositionValid)from parallelStep and 
ompatibleMa
hines and serialMa
hineshave �niteA
tions: �nite In by blastfrom parallelStep and validComposition104



obtain Inl and Outl wherelet inputs = ((
⋃A ∈ set L. input (a
tions A)) − (

⋃A ∈ set L. output (a
tions A))) inlet outputs = ((
⋃A ∈ set L. output (a
tions A)) − (

⋃A ∈ set L. input (a
tions A))) inlet inners = ((
⋃A ∈ set L. inner (a
tions A)) ∪

(
⋃A ∈ set L. input (a
tions A) ∩ (

⋃A ∈ set L. output (a
tions A)))) inlet Q = ((list-times-
ompr L (λA. states A)) × (powermultiset inners)) in
( bool-and-map (λ(qi1, ini , outi , qi3, Ai).

((step Ai qi1 ini outi qi3 ∧ multiset-of (ini ∩ input (a
tions Ai) ∩ inners) ⊆# M 1) ∨
(ini = {} ∧ outi = {} ∧ qi1 = qi3)))

(zip ql1 (zip Inl (zip Outl (zip ql3 L)))) ∧In = set-aggr-�lter (inputs ∪ inners) Inl ∧ In 6= {} ∧ Out = set-aggr-�lter outputs Outl ∧M 3 = (M 1 − multiset-of In) + multiset-of (set-aggr-�lter inners Outl) ∧
(ql1, M 1) ∈ Q ∧ (ql3, M 3) ∈ Q ∧ length ql1 = length L ∧ length Inl = length L ∧length Outl = length L ∧ length ql3 = length L

)by (bestsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def meta-allE [where x = Inl ] meta-allE [where x = Outl ])note 
onditionsOnInlAndOutl = thisdef Outi-def : Outi ≡ Outl ! sour
e-ma
hine L idef inners-def : inners ≡ inner (a
tions (asynComposition L))show ?thesisproof (rule-ta
 x = Outi in exI ,rule-ta
 x = ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ] in exI ,rule-ta
 x = M 1 − multiset-of {i} + multiset-of (inners ∩ Outi) in exI ,rule 
onjI )from validCompositionshow step (asynComposition L) (ql1, M 1) {i} Outi
(ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ], M 1 −Drah�owTools.multiset-of {i} + Drah�owTools.multiset-of (inners ∩ Outi))proof (
larsimp simp: step-def asynComposition-def asynCompositionRaw-def Let-def ,rule-ta
 x = repli
ate (length L) {} [sour
e-ma
hine L i := {i}] in exI ,rule-ta
 x = repli
ate (length L) {} [sour
e-ma
hine L i := Outi ] in exI )let ?
ond1 = bool-and-map (λ(qi1, ini , outi , qi2, Ai). (qi1, ini , outi , qi2) ∈ steps Ai ∧Drah�owTools.multiset-of (ini ∩ input (a
tions Ai) ∩

((
⋃A∈set L. inner (a
tions A)) ∪ (

⋃A∈set L. input (a
tions A)) ∩
(
⋃A∈set L. output (a
tions A)))) ⊆# M 1

∨ ini = {} ∧ outi = {} ∧ qi1 = qi2)
(zip ql1 (zip (repli
ate (length L) {}[sour
e-ma
hine L i := {i}])

(zip (repli
ate (length L) {}[sour
e-ma
hine L i := Outi ])
(zip (ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ]) L))))let ?
ond2 = {i} = set-aggr-�lter ((

⋃A∈set L. input (a
tions A)) −
(
⋃A∈set L. output (a
tions A)) ∪ ((

⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A))))
(repli
ate (length L) {}[sour
e-ma
hine L i := {i}]) 105



A Appendixlet ?
ond3 =Outi = set-aggr-�lter ((
⋃A∈set L. output (a
tions A)) − (

⋃A∈set L. input (a
tions A)))
(repli
ate (length L) {}[sour
e-ma
hine L i := Outi ])let ?
ond4 = Drah�owTools.multiset-of (inners ∩ Outi) =Drah�owTools.multiset-of (set-aggr-�lter

((
⋃A∈set L. inner (a
tions A)) ∪ (

⋃A∈set L. input (a
tions A)) ∩
(
⋃A∈set L. output (a
tions A)))

(repli
ate (length L) {}[sour
e-ma
hine L i := Outi ]))let ?
ond5a = ql1 ∈ list-times-
ompr L stateslet ?
ond5b = M 1 ∈ powermultiset ((
⋃A∈set L. inner (a
tions A)) ∪

(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))let ?
ond6a =ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ] ∈ list-times-
ompr L stateslet ?
ond6b =M 1 − Drah�owTools.multiset-of {i} + Drah�owTools.multiset-of (inners ∩ Outi)
∈ powermultiset ((

⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))let ?
ond7 =length ql1 = length L ∧length (repli
ate (length L) {}[sour
e-ma
hine L i := {i}]) = length L ∧length (repli
ate (length L) {}[sour
e-ma
hine L i := Outi ]) = length L ∧length ql1 = length Lfrom 
ompatibleMa
hines serialMa
hines parallelStep and singleA
tionhave ?
ond2apply (subst set-aggr-�lter .gobble-empty-repli
ate, rule sour
e-ma
hine-length)apply (simp add : set-aggr-�lter-def )apply (subst 
omposite-a
tions.fold , assumption)+apply (frule step-respe
ts-signature(2 ))by blastmoreoverfrom 
ompatibleMa
hines serialMa
hines parallelStep and singleA
tionhave ?
ond3apply (subst set-aggr-�lter .gobble-empty-repli
ate, rule sour
e-ma
hine-length)apply (simp add : set-aggr-�lter-def )apply (subst 
omposite-a
tions.fold , assumption)+apply (frule step-respe
ts-signature(2 ))apply (unfold Outi-def )Clearly the sour
e ma
hine will only have emitted valid outputs.by (rule proofHole[of Outl ! sour
e-ma
hine L i =Outl ! sour
e-ma
hine L i ∩ output (a
tions (asynComposition L))])moreover
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from 
ompatibleMa
hines serialMa
hines parallelStep and singleA
tionhave ?
ond4apply (subst set-aggr-�lter .gobble-empty-repli
ate, rule sour
e-ma
hine-length)apply (simp add : set-aggr-�lter-def )apply (subst 
omposite-a
tions.fold , assumption)+apply (unfold inners-def )apply (rule-ta
 f = multiset-of in eq-
ong-fun-app)by blastmoreoverfrom 
ompatibleMa
hines and parallelStephave ?
ond5a ∧ ?
ond5bapply (insert 
ompatibleMa
hines)apply (insert parallelStep)apply (drule step-respe
ts-statespa
e)apply (subgoal-ta
 (ql1, M 1) ∈ list-times-
ompr L states ×powermultiset ((
⋃A∈set L. inner (a
tions A)) ∪

(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A))))apply blastby (subst 
omposite-statespa
e.fold , assumption+)moreoverfrom 
onditionsOnInlAndOutl have ?
ond7 by (simp add : Let-def )moreoverhave ?
ond6a ∧ ?
ond6bproof (rule 
onjI )show ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ] ∈ list-times-
ompr L statesapply (insert 
onditionsOnInlAndOutl , simp add : Let-def )apply (rule list-times-
ompr .arbitrary-merging-update, simp, simp)proof −from 
ompatibleMa
hines serialMa
hines parallelStep singleA
tionhave sour
e-ma
hine L i < length L by (rule sour
e-ma
hine-length)moreoverhave length ql1 = length L by (insert 
onditionsOnInlAndOutl , simp add : Let-def )ultimatelyshow sour
e-ma
hine L i < length ql1 by simpshow ql1 ∈ list-times-
ompr L statesby (insert 
onditionsOnInlAndOutl , simp add : Let-def )show ql3 ∈ list-times-
ompr L statesby (insert 
onditionsOnInlAndOutl , simp add : Let-def )qed
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A Appendixfrom 
onditionsOnInlAndOutlhave M 1IsCorre
t : M 1 ∈ powermultiset ((
⋃A∈set L. inner (a
tions A)) ∪

(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))by (simp add : Let-def )moreoverfrom 
ompatibleMa
hineshave newOutputIsCorre
t : Drah�owTools.multiset-of (inners ∩ Outi)
∈ powermultiset ((

⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))apply (subst 
omposite-a
tions.fold , assumption)+apply (unfold inners-def )by (blast intro: powermultiset-
ontains-multiset-of )ultimatelyshow M 1 − Drah�owTools.multiset-of {i} +Drah�owTools.multiset-of (inners ∩ Outi) ∈ powermultiset
((

⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))apply (unfold inners-def )proof (rule powermultiset-two-elements-implies-union)show M 1 − Drah�owTools.multiset-of {i} ∈ powermultiset
((

⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))using M 1IsCorre
tproof (rule powermultiset-in
ludes-subset)show M 1 − Drah�owTools.multiset-of {i} ⊆# M 1by (rule multiset-di�eren
e-subset-positive)qedshow Drah�owTools.multiset-of (inner (a
tions (asynComposition L)) ∩ Outi) ∈powermultiset ((
⋃A∈set L. inner (a
tions A)) ∪

(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))by (insert newOutputIsCorre
t , unfold inners-def , simp)qedqedmoreoverhave ?
ond1proof (rule bool-and-map.everyR, subst set-zip, rule ballI , fold step-def ,
larsimp, rename-ta
 iPos)�x iPosshowstep (L ! iPos) (ql1 ! iPos) (repli
ate (length L) {}[sour
e-ma
hine L i := {i}] ! iPos)
(repli
ate (length L) {}[sour
e-ma
hine L i := Outi ] ! iPos)108



(ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ] ! iPos) ∧Drah�owTools.multiset-of
(repli
ate (length L) {}[sour
e-ma
hine L i := {i}] ! iPos ∩input (a
tions (L ! iPos)) ∩
((

⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))) ⊆# M 1proof (
ases iPos = sour
e-ma
hine L i)
ase Trueshow ?thesisapply (insert 〈iPos = sour
e-ma
hine L i 〉, insert 
onditionsOnInlAndOutl)apply (
larsimp simp: Let-def )apply (drule-ta
 list-times-
ompr-same-length)+apply (insert sour
e-ma
hine-length[of L (ql1, M 1) In Out (ql3, M 3) i ])apply (simp add : 
ompatibleMa
hines serialMa
hines parallelStep singleA
tion)apply (unfold Outi-def )apply (drule-ta
 bool-and-map.everyA)apply (erule-ta
 x = (ql1 ! sour
e-ma
hine L i , {i}, Outl ! sour
e-ma
hine L i ,ql3 ! sour
e-ma
hine L i , L ! sour
e-ma
hine L i) in ballE-in)apply (insert sour
e-ma
hine-length[of L (ql1, M 1) In Out (ql3, M 3) i ])apply (simp add : 
ompatibleMa
hines serialMa
hines parallelStep singleA
tion)apply (unfold set-zip)apply 
larsimpapply (rule-ta
 x = sour
e-ma
hine L i in exI , 
larsimp)apply (insert singleA
tion 
onditionsOnInlAndOutl)apply (
larsimp simp: Let-def )apply (drule bool-and-map.everyA)apply (rule dire
tContradi
tion)apply (insert sour
e-ma
hine-input [of L (ql1, M 1) In Out (ql3, M 3) i ])apply (simp add : 
ompatibleMa
hines serialMa
hines parallelStep singleA
tion)From {i} 6= Inl ! sour
e-ma
hine L i and i ∈ input (a
tions (L ! sour
e-ma
hine L i)) ∨i ∈ inner (a
tions (L ! sour
e-ma
hine L i)) follows a 
ontradi
tion.apply (rule proofHole[of False])apply (insert sour
e-ma
hine-length[of L (ql1, M 1) In Out (ql3, M 3) i ])by (simp add : 
ompatibleMa
hines serialMa
hines parallelStep singleA
tion)next
ase Falseshow ?thesisThis 
ase 
an never o

ur, as all input and inner signatures are disjun
t.by (rule proofHole[of ?thesis])qedqed 109



A Appendixultimatelyshow ?
ond1 ∧ ?
ond2 ∧ ?
ond3 ∧ ?
ond4 ∧ ?
ond5a ∧ ?
ond5b ∧?
ond6a ∧ ?
ond6b ∧ ?
ond7by blastqednextshow In = {i} ∨ step (asynComposition L)
(ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ],M 1 − Drah�owTools.multiset-of {i} + Drah�owTools.multiset-of (inners ∩ Outi))
(In − {i}) (Out − Outi) (ql3, M 3)proof (
ases In = {i})
ase True thus ?thesis by blastnext
ase Falsewith validCompositionshow ?thesisproof (
larsimp simp: step-def asynComposition-def asynCompositionRaw-def Let-def ,rule-ta
 x = Inl [sour
e-ma
hine L i := {}] in exI ,rule-ta
 x = Outl [sour
e-ma
hine L i := {}] in exI )let ?
ond1 = bool-and-map (λ(qi1, ini , outi , qi2, Ai). (qi1, ini , outi , qi2) ∈ steps Ai ∧Drah�owTools.multiset-of (ini ∩ input (a
tions Ai) ∩

((
⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A))))
⊆# M 1 − Drah�owTools.multiset-of {i} +Drah�owTools.multiset-of (inners ∩ Outi) ∨ini = {} ∧ outi = {} ∧ qi1 = qi2)

(zip (ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ])
(zip (Inl [sour
e-ma
hine L i := {}]) (zip (Outl [sour
e-ma
hine L i := {}])

(zip ql3 L))))let ?
ond2 = In − {i} = set-aggr-�lter ((
⋃A∈set L. input (a
tions A)) −

(
⋃A∈set L. output (a
tions A)) ∪
((

⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A))))
(Inl [sour
e-ma
hine L i := {}])let ?
ond3 = ¬ In ⊆ {i}let ?
ond4 = Out − Outi = set-aggr-�lter ((

⋃A∈set L. output (a
tions A)) −
(
⋃A∈set L. input (a
tions A)))

(Outl [sour
e-ma
hine L i := {}])let ?
ond5 = M 3 = M 1 − Drah�owTools.multiset-of {i} +Drah�owTools.multiset-of (inners ∩ Outi) −Drah�owTools.multiset-of (In − {i}) + Drah�owTools.multiset-of
(set-aggr-�lter

((
⋃A∈set L. inner (a
tions A)) ∪

(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))
(Outl [sour
e-ma
hine L i := {}]))110



let ?
ond6a = ql1[sour
e-ma
hine L i := ql3 ! sour
e-ma
hine L i ] ∈list-times-
ompr L stateslet ?
ond6b = M 1 − Drah�owTools.multiset-of {i} +Drah�owTools.multiset-of (inners ∩ Outi) ∈ powermultiset
((

⋃A∈set L. inner (a
tions A)) ∪
(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))let ?
ond7a = ql3 ∈ list-times-
ompr L stateslet ?
ond7b = M 3 ∈ powermultiset ((
⋃A∈set L. inner (a
tions A)) ∪

(
⋃A∈set L. input (a
tions A)) ∩ (

⋃A∈set L. output (a
tions A)))let ?
ond8 = length ql1 = length L ∧ length (Inl [sour
e-ma
hine L i := {}]) = length L ∧length (Outl [sour
e-ma
hine L i := {}]) = length L ∧length ql3 = length LIn prin
iple parallel to the above proof about the single element.have ?
ond1 by (rule proofHole[of ?thesis])moreoverhave ?
ond2 by (rule proofHole[of ?thesis])moreoverhave ?
ond3 by (rule proofHole[of ?thesis])moreoverhave ?
ond4 by (rule proofHole[of ?thesis])moreoverhave ?
ond5 by (rule proofHole[of ?thesis])moreoverhave ?
ond6a ∧ ?
ond6b by (rule proofHole[of ?thesis])moreoverhave ?
ond7a ∧ ?
ond7b by (rule proofHole[of ?thesis])moreoverhave ?
ond8 by (rule proofHole[of ?thesis])ultimatelyshow ?
ond1 ∧ ?
ond2 ∧ ?
ond3 ∧ ?
ond4 ∧ ?
ond5 ∧ ?
ond6a ∧ ?
ond6b ∧?
ond7a ∧ ?
ond7b ∧ ?
ond8by blastqedqedqedqedlemma 
on�uen
e-
orollary :
[[mat
hFSMList L;

∧x . x ∈ set L =⇒ serial x ; P q1;
∧q1 i Out q2. [[P q1;

∧Out q2. step (asynComposition L) q1 {i} Out q2]] =⇒ P q2]]
=⇒ step (asynComposition L) q1 In Out q2 −→ P q2Via indu
tion over the set In, taking one a
tion out at a time always 
arrying along P.by (rule proofHole[of ?thesis])
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A Appendixindu
tive-set rea
hable :: ( ′q , ′a
t)asynfsm ⇒ ′q set for A :: ( ′q , ′a
t)asynfsmwhere initial A ∈ rea
hable Aand [[q ∈ rea
hable A; ∃ In Out . step A q In Out q ′]] =⇒ q ′ ∈ rea
hable Alemma 
on�uen
e-invariant :
[[mat
hFSMList L;

∧x . x ∈ set L =⇒ serial x ; q ∈ rea
hable (asynComposition L);P (initial (asynComposition L));
∧q1 i Out q2. [[P q1; step (asynComposition L) q1 {i} Out q2]] =⇒ P q2]]

=⇒ P qapply (erule-ta
 rea
hable.indu
t , assumption)apply (erule-ta
 exE )+by (drule-ta
 q1 = q and q2 = q ′ and L = L and P = P and In = In and Out = Outin 
on�uen
e-
orollary , blast+)end
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