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AbstratIn the age of multi-ore proessors and ubiquitous omputing, more tasks than ever needto be performed by multiple, spatially disjunt omputing failities in a parallel fash-ion. The inherent ommuniation delays in suh systems make a purely synhronousapproah infeasible. While speifying a system, assuming synhrony makes the designproess simpler. It is not lear however, whether an asynhronous system an implementa synhronous spei�ation faithfully. The present thesis gives a onstrutive proof thatan implementation exists whih is behaviourally equivalent to the spei�ation up to asuitable linear-time equivalene. Both spei�ation and implementation are given in Petrinets, a model well suited to desribe parallelism and distribution of a system.Keywords Asynhrony, Synhrony, Petri Nets, Distributed, Completed Step Trae Equivalene
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1 IntrodutionIn today's omputing world, performane depends more than ever on parallelism. As moreand more systems onsist of multiple proessing units, software an no longer exeute in astraight serial one-step-after-the-next manner if the full potential of a system needs to berealised. Rather, software must try to take as many steps in parallel as possible. Whiledoing so, it must still behave orretly, a feat even serial software often fails to perform.Additional omplexities for the parallel ase emerge from an enlarged state-spae andredued debuggability due to non-determinism of sheduling.To guide the reation of new and orret software whih makes maximal use of the novelparallel tehnologies, mathematial models are used. These models abstrat from someapparently less important aspets of the system to show partiular properties about theremaining aspets. One often ignored aspet is time, in partiular the duration of ationsand omputations. The ultimately implemented system however will be embedded in auniverse whih hanges over time. As always when modelling, observations about theabstrat model arry over into the real world only where the assumptions underlying theabstration are valid.There are a multitude of possibilities to abstrat time based hanges of the real worldin a timeless model. Choosing the right abstration for the system in question an beruial. If too �ne an abstration is hosen, theoretial validation of the software mightbe infeasible, if the abstration is too broad, the theoretially proven orretness wrt. thebroad abstration might not arry over into the real world.To ompare two di�erent ways to abstrat time, onsider the example robot in Figure 1.1.It needs to enter one of the two orridors to reah its goal, a barrel of mahine oil.Unfortunately, both orridors have a door, one of whih will be losed. To avoid rashinginto losed doors, the robot will �rst probe the state of the two doors before attemptingto move. Drawing a diagram of the robot's mind, one might arrive at something akinto Figure 1.2. After the probing ation, the robot might deide either for the left orthe right door. This model however neglets the fat that the robot �rst deides andthen moves. Making this distintion between thinking and movement expliit leads toFigure 1.3. Whether these two desriptions of the robot's mind are equivalent or notdepends on whih abstration one hooses.If one onsiders a world whih might hange arbitrarily fast, in partiular faster thanthe robot thinks, the �rst model desribes a robot whih retains both movement optionsuntil movement has been exeuted, whereas the seond model suggests that the robot �rstthinks for a while and then deides for one movement option. If the doors swithed statusbetween that deision and the attempted movement, the robot might deadlok, futilely1



1 Introdution

Figure 1.1: A robot wants to reah an oil barrel, yet some doors blok its way

probemove left move right
Figure 1.2: The mind of a non-thinking robot
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Figure 1.3: The mind of a robot whih thinks for a short timeattempting to exeute a now impossible movement ation. Assuming a su�iently smartrobot, this di�erene in the outome is only possible if the doors move faster than the robotthinks. Clearly, assuming an in�nitely fast hanging world is a very robust assumption.If a system an operate suessfully under that assumption, it an surely operate in thereal universe.Conversely, assuming a stati world sidesteps the issue of how to abstrat the timingof hanges therein. Under that assumption, the two models of the robot's behaviourwould be onsidered equivalent. While suh an assumption is learly not as robust asthe earlier one, today's highly integrated iruits allow the onstrution of robots whihthink substantially faster than the usual door moves. Validation of a system under theassumption that the world is stati is meaningful if the omputer is fast in omparison tothe system it ontrols.Between these two extreme assumptions, one an reate a whole spetrum of di�erentshades of time abstration, giving rise to a spetrum of equivalene relations betweenbehaviours. This so alled linear-time branhing-time spetrum has been desribed ex-tensively in [4℄ and [6℄. The frontier between linear-time and branhing-time is naturallya grey area. Nonetheless, the assumption of an in�nitely fast hanging world orrespondsto branhing-time equivalenes, whereas a stati world assumption underlies linear-timeequivalenes.The hoie between di�erent behavioural equivalenes beomes even more ompliated3



1 Introdution

a b 
Figure 1.4: A synhronous spei�ation and a partitioning into loationsin the light of parallelism, whih is often neessary to build performant systems. Onepossibility is to remove parallelism by substituting it with all possible interleavings of theparallel ations, another is to allow all possible interleavings but retain a possible parallelstep, yet another is to model all ausal dependenies expliitly as done in pomset-traesemantis [20℄.This thesis is onerned with distributed system, that is systems whih perform ativitieswithin multiple (usually spatially) distributed loations in a oordinated fashion. Compu-tations within di�erent loations an naturally proeed in parallel unless they need aessto shared resoures. Aess to these resoures is often the main problem in suh systems,ompliated by the fat that the di�erent loations annot ommuniate instantaneously,but eah message between loations must travel some distane before reahing its desti-nation, whih takes time. As no synhronous ommuniation primitives are available suha system is alled asynhronous.Nonetheless, it is often easier to design a system as if synhronous ommuniation werepossible. The question then is: Given a synhronous spei�ation of a system, an itbe implemented in a distributed and hene asynhronous way? Compare Figure 1.4. Asystem has been spei�ed using the synhronous model of Petri nets [19℄. It has two sharedresoures at the top, and may either perform the ations a and c in parallel, onsuming theleft and right resoure respetively, or it may perform b while onsuming both resouresat one. The elements of the system have been assigned to di�erent loations howeverand an only ommuniate asynhronously. Is there any protool the loations an followin order to ful�l the synhronous spei�ation?The answer to that question is not a binary one. Various protools might exist, dependingon what exatly it means to �ful�l the synhronous spei�ation�, i.e. whih behaviouralequivalene one uses to ompare synhronous spei�ation and distributed implementa-tion. While it was known [7℄ that no protool an exist for most branhing-time equiva-lenes, as outlined in Setion 4, the question was open for linear-time equivalenes.4



The present thesis aims to show that, given a synhronous spei�ation of a parallelsystem, a distributed implementation of this spei�ation exists, under the assumptionsthat� the environment must be slow in omparison to the implementation, i.e. the imple-mentation is only orret up to linear-time equivalenes, and� the implementation may from time to time deide to perform steps in sequenewhih were parallel in the spei�ation.This implementation may not always be useful in the real world. If the hardware usedto implement the distributed system is too slow, the real world will hange faster thanthe system an ope with. It is my personal onjeture that a �nal answer about whatis distributable in the real world will only be reahable by taking time fully into aount.However that is out of the sope of this thesis.The seond assumption is related to the hosen onept of parallelism. This thesis assumesthat whenever a system an perform two steps in parallel, these steps may also our insequene, whih is not an unusual assumption. There is a deviation from the usualintuition however, whih weens that the interleaving of events is eliited by imperfetionsin timing. The systems in this thesis however will deide to perform steps in expliitsequene. Some more details on this deviation are given in Setion 6.Apart from the problems about time-abstration and parallelism onsidered above, thereis one other problem in distributed systems whih this thesis overs. Di�erent ommuni-ations between di�erent loations in a distributed systems might proeed with di�erentspeeds. This an lead to a phenomenon alled message overtaking, where messages arereeived in a di�erent sequene than they were sent. This thesis makes no assumptionsabout properties of message overtaking at all, i.e. all forms of message overtaking areallowed.Other problems, like ontent enoding within messages and error detetion and reoverywill be abstrated away as far as possible. Abstrat interations between parallel ompo-nents are onsidered instead. To model these interations and parallel omponents, Petrinets will be used, whih allow a very intuitive and diret de�nition of distributability.This notion of distributability will also guarantee that no synhronous ommuniationbetween di�erent distributed omponents an happen.Furthermore, as the main Petri net onstrution in this thesis is rather lengthy, �nitestate mahines with a non-standard parallel ombining operator will be employed as anabbreviation for a ertain lass of Petri nets, thus shortening the onstrution and theproofs.Having now leared up the sope of the thesis, a short overview of the ontents should benext. Both Petri nets and the formal model based on state mahines will be introdued inSetion 2 �rst and then extended to a distributed setting in Setion 3. Setion 4 will giveintuition and a short tehnial explanation on why ertain behaviours have no distributedimplementation under branhing-time semantis. The main results of this thesis will be5



1 Introdutiongiven in Setion 5, where a onstrutive proof for a distributed implementation of Petrinets will be given. Finally Setion 6 will give a onlusion and literature overview.Proofs in the earlier hapters will only be skethed in the main text, as the results are notterribly deep and formal proofs for the Isabelle/HOL tool [17℄ have been reated for mostof them and are available in the appendix. I originally envisioned using Isabelle/HOL forthe omplete thesis, but abandoned that attempt after it beame lear that I would notbe able to omplete the formal proofs within the given time frame. A short summary ofthe main problems enountered while working with Isabelle/HOL is given in Setion 6 aswell.
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2 Basi NotionsAs this thesis uses multisets and the notation for these is not quite standardised yet, theloal version of it is given here.De�nition 2.1.1A multiset M is a funtion whih maps to natural numbers together with its domain.The domain will always stay impliit in this thesis.An objet e is an element of the multiset, e ∈ M , i� M(e) > 0.The union of two multisets, M + N , is the pointwise addition, i.e. the multiset suhthat (M + N)(e) = M(e) + N(e). Similarly, the di�erene of two multisets, M − N ,is the multiset suh that (M − N)(e) = max(M(e) − N(e), 0). A multiset M is asubmultiset of another multiset N , M ≤ N , i� ∀x ∈ M. M(x) ≤ N(x).A set S an be understood within the domain of multisets by mapping all its elementsto 1, i.e. S(e) = 1 ⇔ e ∈ S ∧ S(e) = 0 ⇔ e /∈ S.The powermultiset of a set S, M(S), is the set ontaining all multisets whih onlyontain elements of S.Also, the notation P(S) will be used to denote the powerset of a set S.The following paragraphs about Petri nets are taken from [7℄, where this model hasalready been proven e�etive to desribe phenomena in asynhronous systems. The maindi�erene is that the present thesis allows transitions to arry more than one visible ation.The power of this additional possibility however is only used for intermediate onstrutionsteps, and the main results hold also for nets where this is not allowed.De�nition 2.1.2Let At be a set of visible ations.A labelled net N (over At) is a tuple (SN , TN , F N , MN
0 , ℓN) where� SN is a set (of plaes),� TN is a set (of transitions),� F N ⊆ SN × TN ∪ TN × SN (the �ow relation),� MN

0 ⊆ SN (the initial marking), and� ℓN : TN → P(At) (the labelling funtion).Petri nets are depited by drawing the plaes as irles, the transitions as boxes ontainingthe respetive label, and the �ow relation as arrows (ars) between them. When a Petrinet represents a onurrent system, a global state of suh a system is given as a marking,7



2 Basi Notionsa set of plaes, the initial state being MN
0 . A marking is depited by plaing a dot (token)in eah of its plaes. The dynami behaviour of the represented system is de�ned bydesribing the possible moves between markings. A marking M may evolve into a marking

M ′ when a nonempty set of transitions G �res. In that ase, for eah ar (s, t) ∈ F Nleading to a transition t in G, a token moves along that ar from s to t. Naturally, thisan happen only if all these tokens are available in M in the �rst plae. These tokens areonsumed by the �ring, but also new tokens are reated, namely one for every outgoingar of a transition in G. These end up in the plaes at the end of those ars. A problemours when as a result of �ring G multiple tokens end up in the same plae. In that ase
M ′ would not be a marking as de�ned above. This thesis only onsiders nets in whihthis never happens. Suh nets are alled 1-safe. Unfortunately, in order to formally de�nethis lass of nets, the �ring rule must �rst be given without assuming 1-safety. Below thisis done by forbidding the �ring of sets of transitions when this might put multiple tokensin the same plae.De�nition 2.1.3Let N = (SN , TN , F N , MN

0 , ℓN) be a labelled net. Let M, M ′ ⊆ SN . The presetand postset of a net element x ∈ S ∪ T are denoted by •x := {y | (y, x) ∈ F} and
x• := {y | (x, y) ∈ F} respetively. These funtions are extended to sets in the usualmanner, i.e. •X := {y | y ∈ •x, x ∈ X}.A nonempty set of transitions G ⊆ TN , G 6= ∅, is alled a step from M to M ′, notation
M [G〉N M ′, i�� all transitions ontained in G are enabled, that is

∀t ∈ G. •t ⊆ M ∧ (M \ •t) ∩ t• = ∅ ,� all transitions of G are independent, that is not on�iting :
∀t, u ∈ G, t 6= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ , and� in M ′ all tokens have been removed from the preplaes of G and new tokens havebeen inserted at the postplaes of G:

M ′ = (M \ •G) ∪ G• .To simplify statements about possible behaviours of nets, the following de�nition intro-dues some abbreviations.De�nition 2.1.4Let N = (SN , TN , F N , MN
0 , ℓN) be a labelled net. The labelling funtion ℓN shall beexpanded to sets by forming the multiset union of the results, i.e. ℓN(G) =

∑

t∈G ℓN(t).� −→N ⊆ P(S)×M(At)×P(S) is given by M
A
−→N M ′ ⇔ ∃G⊆TN. M [G〉N M ′ ∧

A = ℓN(G) 6= ∅8



� τ
−→N ⊆ P(S) × P(S) is de�ned by M

τ
−→N M ′ ⇔ ∃t ∈ T. ℓN (t) = ∅ ∧

M [{t}〉N M ′� =⇒N ⊆ P(S) × M(At)∗ × P(S) is de�ned by
M

A1A2···An======⇒N M ′ ⇔ M
τ

−→∗
N

A1−→N
τ

−→∗
N

A2−→N · · ·
An−→N

τ
−→∗

N M ′where τ
−→∗

N denotes the re�exive and transitive losure of τ
−→N .The following uses M

A
−→N for ∃M ′. M

A
−→N M ′, M X

A
−→N M ′ for ∄M ′. M

A
−→N M ′,and similar for the other two relations. Likewise M [G〉N abbreviates ∃M ′. M [G〉N M ′.A marking M is said to be reahable i� there is a σ ∈ M(At)∗ suh that MN

0
σ

=⇒N M .The set of all reahable markings is denoted by [MN
0 〉.As stated before, only 1-safe nets are onsidered here. Formally, the restrition only allowsontat-free nets, where in every reahable marking M ∈ [MN

0 〉 for all t ∈ T with •t ⊆ M

(M \ •t) ∩ t• = ∅ .For suh nets, De�nition 2.1.3 ould just as well onsider a transition t to be enabled in
M i� •t ⊆ M , and two transitions to be independent when •t ∩ •u = ∅.Furthermore two additional restritions are imposed. Namely that SN and TN are �nite.Heneforth, net shall refer to a labelled net obeying the above restritions.In nets as just de�ned transitions are labelled with sets of ations drawn from a set At.This makes it possible to see these nets as models of reative systems, that interat withtheir environment. The �ring of a transition t orresponds to the exeution of the ations
ℓN(t) by the system. If ℓN(t) 6= ∅, this �ring an be observed, but if ℓN(t) = ∅, t is aninternal or silent transition whose �ring annot be observed by the environment. Thesetransitions have traditionally arried the label τ instead of ∅, and this onvention will alsobe used in this thesis most of the time.In the following the term plain nets denotes nets where ℓN is injetive and maps onlyto singletons, i.e. essentially unlabelled nets. Similarly, the term plain τ -nets desribesnets where ℓN maps to singletons or τ and ℓN(t) = ℓN(u) 6= τ ⇒ t = u. This basiallydesribes nets where every observable ation is produed by a unique transition.The present thesis fouses mainly on implementations of plain nets, as many of the sub-tleties of varying equivalene notions an thus be avoided without negatively a�eting theresults about asynhrony.Some of the onstrutions in this thesis will lead to very large nets. Sine giving themdiretly in Petri net notation would ertainly not lead to a better understanding of theideas guiding them, these onstrutions will work instead by onstruting nets out ofommuniating �nite state mahines (FSMs). Sine �nite state mahines and �nite stateautomata are the same thing, these two terms will be used synonymously. 9



2 Basi NotionsDe�nition 2.1.5An ation signature Σ is a tuple (ΣI , ΣO, Στ ) where� ΣI is a set (of input ations),� ΣO is a set (of output ations),� Στ is a set (of internal ations), and� ΣI , ΣO and Στ are pairwise disjoint.In the following, Σ will also be used to mean ΣI ∪ ΣO ∪ Στ .De�nition 2.1.6A state mahine A is a tuple (ΣA, QA, qA
0 ,→A), where� ΣA is an ation signature,� QA is a set (of states),� qA

0 ∈ QA (the initial state), and� →A ⊆ QA × (P(ΣA
I ∪ ΣA

τ ) \ {∅}) × P(ΣA
O) × QA (the transition relation).Instead of (q, I, O, q′) ∈ →A the notion q

I;O
−→A q′ will be used to denote that a spei�step an be performed. The state mahine A is �nite, i� QA is. A state q ∈ QA isreahable i� a hain of steps qA

0
I1;O1−−−→A

I2;O2−−−→A · · ·
In;On−−−→A q exists.This de�nition allows systems of multiple onurrent state mahines to be desribed asa state mahine again. At the same time it allows suh omposed systems to performations in parallel, one of the main features of a truly distributed system. These featureswill be used in the de�nition of a parallel omposition operator on state mahines inSetion 3.Most FSMs onstruted later will have the nie property of only performing one inputation at a time, giving rise to the following de�nition.De�nition 2.1.7A state mahine A is alled serial i� q

I;O
−→A q′ ⇒ |I| = 1.As the names of states of a state mahine do not in�uene the observable behaviour of astate mahine at all, it is advantageous to onsider two state mahines whih only di�erin these names as equivalent. This notion of equivalene is formalised as follows.De�nition 2.1.8Let A and A′ be two state mahines.

A and A′ are isomorphi, A ≈ A′, if and only if ΣA = ΣA′ and there exists a bijetion
ϕ : QA → QA′ suh that

ϕ(qA
0 ) = qA′

0

q
I;O
−→A q′ ⇔ ϕ(q)

I;O
−→A′ ϕ(q′) .
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3 Distributed SystemsAs already noted, many of today's omputer systems are distributed. To further analysethese systems formally, the essential aspets of distributed systems need to be singled outand onverted into mathematial properties. Obviously not all of the properties shouldbe handled in that way, otherwise the mathematial models will beome onvoluted andnot any simpler than the original systems. Thus the formal models will be abstrationsof the real systems onentrating on those aspets whih seem relevant.The formal models in this thesis will in partiular ignore the possibility of hardwarefailures, the atual omputations exeuted at the di�erent loations, any knowledge aboutdurations both of omputations and of ommuniation and any physial properties of theinvolved nodes like dimensions or thermal properties.Instead the models onentrate on the possibility of parallel ations, the asynhrony ofall ommuniation between nodes and on the ontrol �ow within eah of the nodes. Inpartiular they also inlude the possibility of message overtaking, i.e. that two messagesare reeived in a di�erent order than they were sent. This phenomenon ours not in alldistributed systems, but is for example existent in the internet.In the following, the two system models introdued in Setion 2 will be extended to adistributed setting. First, nets will be equipped with a notion of loations and distributionin a pretty straightforward way, providing the intuition to onnet the theoretial resultsto the problems of the real world. Then a parallel omposition operator on state mahineswill be de�ned, produing state mahines whih are strongly related to distributed netsbut better suited for proofs about ompliated systems.3.1 Distributed Petri NetsTo de�ne a distributed net the easiest � and indeed obvious � way is to assume a set ofloations and to mount eah plae and transition of the net on some element thereof. Theintuition is that eah element is somehow implemented at the spei�ed loation. After allelements have been plaed on one loation or the other, some arrows will ross loationborders. It is along these arrows that the di�erent loations ommuniate. An exampleof a net with suh loation information attahed an be found in Figure 3.1.A signi�ant ommuniation delay between loations is assumed, whih an be representedexpliitly by introduing τ -labelled transitions along arrows rossing loation borders, asdone in Figure 3.2. Note that due to this ommuniation delay between the �start drive�11



3 Distributed Systems
end drive
start drive wait look

pereive

sensor loationpu loationuser loation
allow drive

Figure 3.1: An example of a loated net, modelling an example robot
τ

τ

τ

τ

τ

τ

τ

τ

end drive
start drive wait look

pereive

sensor loationpu loationuser loation
allow drive
Figure 3.2: A loated net with an expliit representation of ommuniation delay
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3.1 Distributed Petri Netstransition and its preplae to the right a premature deision is enfored, leading to adeadlok if the token is sent the wrong way and the user never allows the exeution ofthe �allow drive� transition. A haraterisation of subnets where problems of this kindare exhibited has been done in [8℄.As this thesis wants to show how to implement a net in a distributed manner withouthanging its behaviour, making a net distributed should not introdue new deadloks.Hene the requirement is imposed that all preplaes of a transition are o-loated withthe transition to enable the synhronous removal of tokens. No speial requirement isneessary for onnetions from transitions to postplaes as all nets onsidered in this thesisare 1-safe. Thus the �ring of transitions annot be in�uened by the presene of tokens onthe postplaes. Furthermore instantaneous and delayed reation of tokens are equivalentunder nearly all equivalene relations whih abstrat from τ -moves. Additionally, as asystem is usually distributed to inrease performane by using multiple exeution units atthe same time, a seond requirement is imposed whih fores transitions �ring in parallelto reside on di�erent loations.As long as the two requirements are honoured, a system may be distributed in a varietyof ways. A spei� assoiation of transitions and plaes to loations whih ful�ls theserequirements is alled a valid distribution. Some nets have multiple valid distributions, yeta single one su�es to make a net distributed, as it ould be implemented in a distributedfashion.De�nition 3.1.1Let N = (SN , TN , F N , MN
0 , ℓN) be a net. Let Lo be a set of loations.The net N is distributed i� there exists a funtion D : SN ∪ TN → Lo suh that� s ∈ •t ⇒ D(s) = D(t) and� M1 ∈ [MN

0 〉 ∧ M1 [G〉N M2 ⇒ ∀t, u ∈ G, t 6= u. D(t) 6= D(u).One important lass of nets whih are distributed are those haraterized in [22℄ as netsof sequential mahines. Sequential mahines are de�ned therein as Petri nets with twodi�erent kinds of plaes. Some plaes are states of the sequential mahine, the othersare ommuniation bu�ers whih the mahine reads and writes. As the name alreadysuggests, sequential mahines are only allowed to exeute ations in sequene, not inparallel. This is formalised by partitioning the plaes of eah sequential mahine intobu�er (B) and state plaes (S) and requiring that in eah reahable marking exatly onestate plae holds a token. Also, to make analysing networks of sequential mahines easier,one imposes that no step of a sequential mahine may perform both input and output.As long as the whole network is 1-safe however, every net an be transformed into anequivalent one whih ful�ls this ondition.De�nition 3.1.2Let N = (SN , TN , F N , MN
0 , ℓN) be a net. Let SN = B ∪ S with B ∩ S = ∅.

N is a sequential mahine i� 13



3 Distributed Systems
do a do bqB BS

a bFigure 3.3: A trivial deision based upon available input � already not free hoie� ∀t ∈ TN . |•t ∩ S| = 1 ∧ |t• ∩ S| = 1 (single state invariant) and� |MN
0 ∩ S| = 1 (single state at beginning).The set S is alled the set of state plaes, the set B the set of bu�er plaes.Atually [22℄ lists three other requirements. One whih guarantees reahability of allstates of a mahine, provided enough input is available in the bu�ers. This was neessaryas the paper tried to make all transitions in a system life. The requirement has beendropped here, as it was onsidered unneessary and umbersome, espeially when dealingwith initialisation sequenes mahines might want to perform only one. The seonddropped requirement enfored the free-hoie property ( ∀s ∈ SN . |s•| > 1 ⇒ ∀t ∈

s•. |•t| = 1) within eah sequential omponent, e�etively prohibiting sequential mahinesto reat di�erently to di�erent inputs (ompare Figure 3.3). While handy to prove livenessproperties, this requirement makes it impossible to transmit meaningful information toanother sequential omponent, as the reeiver an not base any deision on reeivedinput. See Setion 6.2 on why this requirement is only problemati under some impliitassumptions made so far. The third dropped requirement demanded that transitionswould not perform input and output at the same time. A 1-safe system however an betransformed into a semantially equivalent one whih ful�ls this requirement by splittingevery transition in two, onneted with a state plae.Sequential mahines an be oupled by sharing ommon bu�er plaes. To remove theneessity of loking algorithms on the lower level, eah bu�er is only allowed to be writ-ten by one mahine and read by one mahine. Hene eah bu�er provides a one-wayommuniation link between a pair of mahines.De�nition 3.1.3Let {Ni | 1 ≤ i ≤ n} with Ni = (SNi, TNi, F Ni, MNi
0 , ℓNi) be a set of sequential ma-hines. Let Si and Bi denote the respetive state plaes and bu�er plaes.The set is ompatible i�� i 6= j ⇒ Si ∩ Sj = ∅,� ∀p. p ∈ Bi ∧ p ∈ Bj ∧ p ∈ Bk ⇒ i = j ∨ j = k ∨ k = i,� i 6= j ⇒

•
TNi ∩

•
TNj = ∅, and� i 6= j ⇒ TNi

•
∩ TNj

•
= ∅.14



3.2 Asynhronous Finite State MahinesDe�nition 3.1.4Let {Ni | 1 ≤ i ≤ n} be a ompatible set of sequential mahines.The parallel omposition of the mahines N0, N1, . . . , Nn, ∥

∥

∥

1≤i≤n
Ni is de�ned as the net

N‖ = (
⋃

1≤i≤n SNi,
⋃

1≤i≤n TNi,
⋃

1≤i≤n F Ni,
⋃

1≤i≤n MNi
0 ,

⋃

1≤i≤n ℓNi), where the labellingfuntion is handled as a relation.Every network of sequential mahines has a valid distribution as follows. Eah sequentialmahine is assoiated with a new loation to whih all transitions of that sequentialmahine and all their preplaes belong. As the sets of preplaes of di�erent sequentialmahines are guaranteed to be disjunt, suh a distribution always exists.3.2 Asynhronous Finite State MahinesIt is the goal of this thesis to show how to implement arbitrary nets by distributed nets.Indeed the nets onstruted will be nets of oupled sequential mahines. However, theonstrution shown later is rather lengthy. To inrease readability and understanding, thesequential mahines are not represented by nets diretly, but as FSMs. To ensure loseorrespondene between the FSMs and the nets, the oupling between FSMs is de�nedhere rather unusually, with semantis mimiking the net behaviour.When ombining multiple FSMs into one bigger system, outputs of one mahine and in-puts of the other together onstitute a ommuniation link between the two mahines.Suh a ommuniation link will not be observable from the outside of the omposed sys-tem. All other individual ations however stay visible and onstitute the outside interfaeof the new system. To remove the possibility of on�its between the two mahines whendealing with the outside world, all resulting input and output ations of the new systemmust originate uniquely from one of the two mahines. To ease presentation, the addi-tional � and semantially irrelevant � requirement is imposed that the internal ations areglobally unique.De�nition 3.2.1Two ation signatures Σ and Σ′ math, i�� ΣI ∩ Σ′
I = ∅� ΣO ∩ Σ′
O = ∅� Στ ∩ Σ′ = ∅� Σ ∩ Σ′

τ = ∅To de�ne how the omposition of state mahines behaves, the properties of the ommu-niation links need to be given. To avoid speial ases, ommuniation links are modelledas a queue apable of holding any amount of messages the sender might ever produe.It will turn out later, however, that all state mahines atually onstruted in this thesiswill never send a message into a non-empty queue. 15
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{start}; {com1}

{com2}; {} {com2}; {}

{com1}; {com2}

{idle}; {beep}

a b d
efg

Figure 3.4: Two (serial) FSMs with mathing ation signatures, in partiular the signatureof the left FSM is Σ = ({start, com2}, {com1}, ∅) and the right FSM has thesignature Σ′ = ({com1}, {com2, beep}, {idle})

{start}; {}

{com1}; {}

{com2}; {}

{com2, idle};
{beep} {idle}; {beep}

(a, e, {})

(b, e, {com1})

(b, f, {com2})
(c, f, {})

(c, g, {})

(d, f, {})

(d, g, {})
(c, g, {com2})Figure 3.5: The omposition of the two FSMs of Figure 3.4, again an FSM (unreahablestates not shown), the signature is Σ = ({start}, {beep}, {idle, com1, com2})
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3.2 Asynhronous Finite State MahinesDe�nition 3.2.2Let S = {Ai | 1 ≤ i ≤ n} be a set of state mahines with pairwise mathing ationsignatures, i.e. for all 1 ≤ i ≤ n, 1 ≤ j ≤ n with i 6= j, ΣAi and ΣAj math.Let IS =
⋃

1≤i≤n ΣAi

I , OS =
⋃

1≤i≤n ΣAi

O and TS =
⋃

1≤i≤n ΣAi
τ .The asynhronous parallel omposition of A1, A2, . . . , An, ∥

∥

∥

1≤i≤n
Ai, is de�ned as thestate mahine A‖ = (ΣA‖ , QA‖ , q

A‖

0 ,→A‖) with� ΣA‖ = (IS \ OS, OS \ IS, TS ∪ (IS ∩ OS)) ,� QA‖ = ×1≤i≤n QAi × M(IS ∩ OS),� q
A‖

0 = (qA1

0 , . . . , qAn
0 , ∅),and, for I ⊆ Σ

A‖

I ∪Σ
A‖
τ and O ⊆ Σ

A‖

O , (q1, . . . , qn, M)
I;O
−→A‖

(q′1, . . . , q
′
n, M

′) if and onlyif � for all 1 ≤ i ≤ n either pi
Ii;Oi−−→Ai

qi ∧ Ii ∩ΣAi

I ∩Σ
A‖
τ ⊆ M or Ii = Oi = ∅∧pi = qi,� I =

⋃

1≤i≤n Ii 6= ∅ (input is omposed of subomponent inputs),� O =
⋃

1≤i≤n Oi ∩ Σ
A‖

O (output is omposed of visible subomponent outputs), and� M ′ = (M − I) + (
⋃

1≤i≤n Oi ∩ Σ
A‖
τ ) (message bu�er is orretly adjusted).Setion 6.2 ontains a disussion of the di�erenes between this de�nition of state mahineomposition other de�nitions found in the literature.Using a multiset for the message bu�ering requires potentially unbounded storage. How-ever, this faility will not be used in the main onstrution of this thesis, whih neveroutputs a message if the same message is already travelling. The following de�nitionformalises this property.De�nition 3.2.3Let A1, A2, . . . , An be serial FSMs with pairwise mathing ation signatures. Let A‖be the asynhronous parallel omposition of all these FSMs.The omposition A‖ is said to be 1-safe, i� for all reahable states q ∈ QA‖ it holdsthat ∀x ∈ πn+1(q). πn+1(q)(x) = 1.When proving properties of omposed automata, it is advantageous to onsider onlythe interleaving of the omponent automata and derive results about parallel behaviourtherefrom. However, this is only possible if the parallel omposition behaves in a on�uentway, that is, di�erent sheduling of the omponents does not lead to di�erent systemstates. Indeed the omposition de�ned in De�nition 3.2.2 is on�uent. A weaker laimonly onsidering serial FSMs su�es for all proofs later on, however.Lemma 3.2.1Let A1, A2, . . . , An be serial FSMs with pairwise mathing ation signatures. Let A‖be their asynhronous parallel omposition.Let I ⊆ Σ

A‖

I ∪ Σ
A‖
τ and O ⊆ Σ

A‖

O . 17



3 Distributed SystemsIf q
I;O
−→A‖

q′′ then either |I| = 1 or for all i ∈ I there exists some O′ ⊆ O and a q′ suhthat q
{i};O′

−−−→A‖
q′

I\{i};O\O′

−−−−−−→A‖
q′′.Proof (Sketh)See Isabelle/HOL for a formal version.The ation i must have originated from some omponent Ai. Taking O′ to be Oi fromDe�nition 3.2.2, the two steps are possible. �The parallel omposition of FSMs is assoiative and ommutative up to isomorphism.Proposition 3.2.1Let A, A′ and A′′ be state mahines with pairwise mathing ation signatures.

A‖A′ ≈ A′‖A

A‖(A′‖A′′) ≈ A‖A′‖A′′

(A‖A′)‖A′′ ≈ A‖A′‖A′′Proof (Sketh)See Isabelle/HOL for a formal version of ommutativity.Commutativity via
ϕ(q1, q2, M) = (q2, q1, M) .Assoiativity via

ϕ(q1, (q2, q3, M1), M2) = (q1, q2, q3, M1 + M2)and
ϕ((q1, q2, M1), q3, M2) = (q1, q2, q3, M1 + M2)respetively. �
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4 Distributed Systems and Branhing Time4.1 Why It Should Not WorkThe intuition why distributed implementations of arbitrary systems are impossible underbranhing-time semantis is easy to onvey using a simple example. Consider the situationin Figure 4.1. A team of two robots stands in front of two doors. The robots want to reahat least one barrel of oil, but are separated from the barrels by two doors, whih open andlose. Clearly, if the two doors stay losed forever, the robots stand no hane, hene therestrition is imposed that at eah point in time at least one door is open. As branhing-time semantis are onsidered, it is assumed that the doors may lose instantaneously atany point in time. Nonetheless there is a simple and robust protool for the two robots tofollow: Drive forward until the barrel is reahed. As one door will be open at every pointin time, one robot is guaranteed to drive through. Even if only one door ever opens, thetwo robot team reahes one barrel.Compare now the situation in Figure 4.2 where the same two robots have been reused, buttheir batteries have been depleted from earlier usage and they annot move until they havereloaded their batteries from an external soure. Just suh a soure has been provided inform of an external battery right in the middle of the robots, ontaining enough hargeto arry either robot to the respetive barrel, but not both of them. Thus this exampleontains a distributed system onsisting of two robots whih need to ommuniate aboutwhih one gets to load its battery and moves. One this has been deided, the branhing-time assumption strikes: Whenever the harge has been transferred to some robot, saythe upper one, the door in front of it loses. As the doors may move arbitrarily fast thisan happen before the robot has any hane to move. Hene any forward movement bythe upper robot is inhibited. Even if the two robots suspet that the upper door will notopen and transfer the harge to the lower robot, the doors may swith status again andthe lower door stays losed from then on. Continuing in this manner, no progress is evermade.These onsiderations do not however exlude a randomised solution. As long as thebehaviour of the doors is not all-knowing and downright evil, the robots stand a fairhane: By transferring the harge randomly between the two robots and trying to moveevery so often (note that in this idealised example world, no energy is lost if a movewas unsuessful), one robot will eventually manage to get past the respetive door. Asthe time until this strategy sueeds is unknown a priori, branhing-time equivalenesoften do detet a di�erene between this behaviour and the instantly suessful attemptof Figure 4.1. If the equivalene in question does not, a randomised strategy, inluding19



4 Distributed Systems and Branhing Time

Figure 4.1: Two robots wanting to reah a barrel

Figure 4.2: The same situation as in Figure 4.1 but with depleted batteries
20



4.2 Why It Does Not Workan in�nitely improbable in�nite loop, is perfetly �ne.The equivalene notion used in the remainder of this setion does not allow suh loops.It identi�es two systems if after the same observable behaviour, the two systems o�er thesame multisets of ations for exeution. As the systems annot enfore the exeution ofations, but have to hope for the world to allow them, �o�er� is probably the best hoieof words here.De�nition 4.1.1Let N = (SN , TN , F N , MN
0 , ℓN) be a net, σ ∈ At∗ and X ⊆ M(At).

〈σ, X〉 is a step ready pair of N i�
∃M. MN

0
σ

=⇒N M ∧ M X
τ

−→N ∧ X = {A ∈ M(At) | M
A
−→N} .The set of all step ready pairs of N is denoted R(N). Two nets N and N ′ are said tobe step readiness equivalent, N ≈R N ′, i� R(N) = R(N ′).4.2 Why It Does Not WorkTaking the formal de�nition of �distributed� from Setion 2, it has already been proventhat some behaviours annot be implemented in a distributed way in [7℄. This setionwill give a short reounting of the reasoning used there.Unfortunately the intuitive example given at the beginning of this setion does not map tothe formal problem. The two robot system of Figure 4.2 an be represented as depitedin Figure 4.3 using a net. Using the formal de�nition of distributed, one �nds thatthe system is already distributed, as the two transitions annot �re in parallel. As noparallelism between transitions is needed, o-loating the two transitions would be a validimplementation. This would amount to onneting both robots to the external batteryat one, plaing them diretly in front of the doors, and then trying to move forward. Inthat implementation, one a robot detets that it got past the door, it gets all the batteryharge and moves to the goal. Assuming that the short moment while a robots futilelydrives against a losed door onsumes only a negligible amount of energy, this solves theproblem.However, suh an implementation is not feasible in the situation depited in Figure 4.4.The three robots try to reah at least two barrels, again having to reload their batteriesfrom the two external batteries provided. For the sake of example the middle robot istwie as big as the other two, hene in need of twie the energy as well. As before, thedoors open and lose arbitrarily fast and unpreditably. The robots have two options toreah their goal of fething two barrels. Either the upper and lower robot eah grab onebattery, move through the respetive doors in front of them and reah one barrel eah, orthe larger robot in the middle grabs both batteries, moves through its door and reahesthe two barrels. 21



4 Distributed Systems and Branhing Time
move upper robotmove lower robotbattery disposal

Figure 4.3: An abstrat model of the situation in Figure 4.2

Figure 4.4: Three exhausted robots work in a team to reah a total of two barrels
p

q

t

u

vFigure 4.5: A fully reahable visible pure M22



4.2 Why It Does Not WorkThis robot problem orresponds to the net in Figure 4.5. As t and v an potentiallyhappen in parallel they must not be o-loated, hene at least one battery annot beonneted to both neighbouring robots, giving rise to the same problems as before. In [7℄we found the struture depited in these �gures to be at the ore of the problem. Thestruture an be desribed formally as follows.De�nition 4.2.1Let N = (SN , TN , F N , MN
0 , ℓN) be a net. N has a fully reahable visible pure M i�

∃t, u, v ∈ TN . •t ∩ •u 6= ∅ ∧ •u ∩ •v 6= ∅ ∧ •t ∩ •v = ∅ ∧
ℓN(t) 6= ∅ ∧ ℓN(u) 6= ∅ ∧ ℓN (v) 6= ∅ ∧
∃M ∈ [MN

0 〉. •t ∪ •u ∪ •v ⊆ M .Clearly, a net ontaining a fully reahable visible pure M annot be distributed. Tryingto implement suh a net in a distributed manner, one quikly �nds that a fully reahablevisible pure M gives rise to a partiular step ready pair.Proposition 4.2.1Let N = (SN , TN , F N , MN
0 , ℓN) be a plain net whih has a fully reahable visible pureM. There exists 〈σ, X〉 ∈ R(N) with

∃a, b, c ∈ At. a 6= c ∧ {b} ∈ X ∧ {a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X .ProofSee [7℄. �In order to implement a net exhibiting suh a step ready pair, one needs at least threetransitions exeuting the three di�erent ations a, b, and c. As the set X desribes thepossible sets of ations after a ertain marking M has been reahed, all three transitionsmust be enabled in the same marking M . Furthermore the transitions exeuting a and
c an happen in parallel and hene annot share a preplae due to De�nition 3.1.1. Thetransitions exeuting a and b annot exeute together, so some shared preplae must exist.The same holds for the pair of b and c. The transition and plae struture just desribedsounds familiar. Indeed the transitions exeuting a, b, and c are guaranteed to form afully reahable visible pure M.Proposition 4.2.2Let N = (SN , TN , F N , MN

0 , ℓN) be a net suh that there exists 〈σ, X〉 ∈ R(N) with
∃a, b, c ∈ At. a 6= c ∧ {b} ∈ X ∧ {a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X. Then N has afully reahable visible pure M.ProofSee [7℄. �23



4 Distributed Systems and Branhing TimeFrom these propositions, it follows that no distributed system an exhibiting the same be-haviour as the system of Figure 4.5 up to step readiness equivalene. Hene not all systembehaviours an be implemented in a distributed fashion if step readiness equivalene isused to ompare systems. This result depends on two properties of step readiness equiv-alene whih are not neessary for branhing-time equivalenes in general. Step readinessequivalene does not allow the implementation to use divergene, hene a randomisedimplementation is ruled out. Furthermore step readiness equivalene respets parallelism.Otherwise the system ould be stripped of all its parallelism by introduing a new plaeonneted to all transitions by a loop. After all parallelism has been removed the triv-ial distribution, o-loating all elements is allowed by De�nition 3.1.1. Apart from thathowever, step readiness equivalene is quite a oarse branhing-time equivalene, henethe impossibility of implementing fully reahable visible pure Ms should hold for mostbranhing-time equivalenes.
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5 Distributed Systems and Linear Time5.1 Why It Should WorkAs daily progress in design and deployment of distributed systems shows, there must besome way for distributed systems to do useful work in the real world. So either thereexists no real world demand for the behaviours identi�ed as problemati in the previoussetion, or the branhing-time assumption is not always warranted.It is indeed the seond possibility as a short example demonstrates. Consider a web shopwhih sells small four wheeled robots to omputer sientists. At some point a sientist hasdeided to buy a robot. Then the web shop software and some software of the sientist'sbank will ommuniate to ensure prompt payment. The system onsisting of these twosoftware agents has basially two options. Either both agree that the money shall betransferred and the robot shall be sent. Or they agree on not performing the transation,usually due to insu�ieny of either robots or, more likely, money. They omprise adistributed system and an only ommuniate asynhronously. However no branhing-time problems an arise. The sientist, after having triggered the �buy� button, is simplynot o�ered any means to ommuniate a possible hange of mind to the web shop software,and the bank software will blissfully ignore possible onurrent withdrawals and produeoverdraft. Thus while the ommuniation between web shop and bank is in progress,the environment annot hange in ways whih will make the exeution of either optionimpossible.Hene this setions onsiders linear-time semantis. The system is assumed to be fastin omparison to the world and an �rst measure all relevant aspet of the world andtherefrom infer whih ations will be possible later. Returning to the example from theearlier setion, onsider again the robots in Figure 4.2. If the doors are slow in omparisonto the robots' thoughts, the solution is fairly straightforward. Eah robots monitors thestatus of the door in front of it. One a door opens, the harge is transferred to therobot standing in front of it. The robot subsequently moves before the door has losedagain, thus solving the problem. Ignoring the expliit door monitoring step, this an bemodelled abstratly by assuming that every ation the system makes is indeed possible,as otherwise the system would not have hosen to exeute that ation in the �rst plae.Note that this �orretness� of hoies is not expliitly represented in the formal modelsunder onsideration. Rather, the di�erene is in the equivalene relation used for om-paring two systems. Earlier two systems were only equivalent if at eah indistinguishablepoint of exeution they o�ered the same set of ations to the world, i.e. would reat the25



5 Distributed Systems and Linear Timesame to any states of the world. Now however, two systems are already equivalent ifboth o�er the same set of possible exeution sequenes. As both systems are assumedintelligent enough to make the right hoies every time, they would make the same hoiesin the same situation and hene exhibit the same behaviour as well.Also, the equivalene relation will disern live- and deadloks of the implementation, inpartiular sine distributed systems have a proven tendeny to exhibit them. To provethat the onstrution given later does not introdue new live- or deadloks, an equivalenewhih noties those is neessary. Finally, the equivalene notion will disern di�erenesin parallelism, i.e. two systems of whih only one an do two partiular ations in parallelare di�erent. This requirement helps disern systems of di�erent performane.De�nition 5.1.1Let N = (SN , TN , F N , MN
0 , ℓN) be a net, σ ∈ M(At)∗ and 0, δ /∈ At.

σ is an inomplete step trae of N i�
∃M ⊆ SN . MN

0
σ

=⇒N M .

σ0 is a ompleted step trae of of N i�
∃M ⊆ SN . MN

0
σ

=⇒N M ∧ M X
τ

−→N ∧ ∄A. M
A
−→N .

σδ is a diverging step trae of N i�
∃M ⊆ SN . MN

0
σ

=⇒N M ∧ M
τ

−→N
τ

−→N
τ

−→N · · · .The set of all inomplete, ompleted, and diverging step traes of N is denotedCST(N). Two nets N and N ′ are said to be ompleted step trae equivalent, i�CST(N) = CST(N ′).Completed step trae equivalene is a straightforward extension of the well known om-pleted trae equivalene. In partiular, it adds the ability to detet parallelism but doesnot disern di�erent ausal strutures. Like ompleted trae equivalene it does not de-tet deadloks in one omponent of a system, as long as some ativity an ontinue. Alsosimilarly, it does not imply any fairness or justness onditions. It detets liveloks evenif they are ompletely independent of other ativities in the system, however. Also, thisequivalene mirrors my intuition that if a system an perform ativities in parallel, it doesnot need to perform them in parallel every time, but will do so often enough to make theperformane improvement signi�ant.After having de�ned two systems to be equivalent as per De�nition 5.1.1, the remainingtask is to give an algorithm whih, given an arbitrary net, onstruts an equivalent dis-tributed version of it. The main problem it solves is how to make a oherent hoie ofations in a set of partly parallel, partly on�iting transitions. In ontrast to the resultsin Setion 4, this hoie an be made arbitrary early, in partiular without atually �ring26



5.2 How It Does Workany of the transitions. Why is this so? Beause it is assumed that all relevant informationabout the world is already known to make the orret hoie. Hene the transitions inquestion will �rst reah a onsensus about whih ones �re without exhibiting any externalbehaviour and then exeute the preplanned set of transitions later. Details of how thatworks are given below.5.2 How It Does WorkThis setion ontains the main results of this thesis and gives a onstrutive proof of theexistene of a distributed implementation for every behaviour representable by a plainnet up to ompleted step trae equivalene.The proof will start at an arbitrary plain net, transforming it into a network of ommuni-ating serial FSMs. Eah serial FSM will in turn be transformed into a net, and similarlythe oupling between the FSMs will also be transformed into net strutures. This slightlyindiret approah allows the interesting problems of the distribution protool to be de-sribed in the more ompat model of the FSMs. The seond mapping, from FSMs tonets, will be very diret, thereby arrying over the orretness of the protool bak intothe domain of Petri nets.Before delving into the formal de�nitions, the intuition behind the protool should beexplained. Assume a net N is given. First an arbitrary but �xed total order over allplaes of N is de�ned. Then plaes and transitions of N will be replaed, or implemented,by small subnets whih only ommuniate asynhronously.The implementation of a transition, say t, waits until all preplaes of t have reeived atoken. When it deides to �re, the implementation of t requests exlusive permission to usea token from (loks) all its preplaes in that global order. While the lok is not aquired,no further ativity ours in the implementation of t. The global order guarantees thatdeadloks do not our. Assume the greatest (aording to the global order) loked plaeis p, then the transition holding the lok on plae p will only attempt to aquire lokson plaes greater than p. One the implementation of t holds loks on all preplaes of
t, it �res, noti�es the preplaes of the token removal, and produes new tokens on allpostplaes.The main ompliation is handling of failed lok attempts. When the implementation of atransition t was waiting to aquire a lok on a plae p, yet another transition u sueededin �ring and removed the token loated on p, the implementation of t must abort thelok attempt, must release all urrently held loks and resume waiting for all preplaes tobeome marked. Liveloks do not our, as whenever transition t fails to aquire a lok,some other transition must have �red.The rest of the algorithm is basially bookkeeping. 27



5 Distributed Systems and Linear TimeThe protool between plaes and transitions uses the following messages, whih all arryindies denoting the ommuniation partners:� notifyt
s (plae s has reeived a token)� suesst

s (plae s granted the lok to transition t)� looset
s (some transition di�erent from t loked the plae s and removed the tokenfrom it)� tokent
s (plae s aknowledges the removal of its token by the transition t)� lokt

s (transition t requests exlusive permission to use the token on plae s)� akUt
s (transition t aknowledges the removal of the token on plae s, while no lokingrequest is pending from t to s)� akLt
s (transition t aknowledges the removal of the token on plae s, after a lokingrequest has been sent to s)� unlokt

s (transition t releases the lok on plae s)� got
s (transition t removes the token from s)� newTokent

s (transition t produes a new token on s)First, the implementation of transitions will be given as an FSM. The implementationoperates in two phases. The �rst phase ollets information about whih preplaes aremarked and starts to lok preplaes one all are marked. The seond phase is the atual�ring, notifying all preplaes about the removal of a token, then waiting until all preplaeshave aknowledged said removal. Finally new tokens are produed on the postplaes.The internal ations used are as follows:� internalLokt
l (transition t starts to lok plae l)� internalFiret (transition t begins �ring and starts to remove tokens from preplaes)� internalDonet
l (transition t has �nished �ring and produes tokens on postplaes)The states of the implementation mirror the two phases losely:� lokingt(L, l, T ) (The transition t tries to lok preplaes. All preplaes in T urrentlyhold a token, preplaes in L have already been loked, the lok on preplae l isurrently being aquired. If l = ⊥ no lok is urrently being aquired.)� �ringt(T ) (The transition t removes tokens from the preplaes. Tokens from thepreplaes in T have already arrived.)De�nition 5.2.1Let N = (SN , TN , F N , MN

0 , ℓN) be a plain net. Let ≤ be a total order over SN . Let
⊥ /∈ T be some new objet.For every transition t ∈ TN the transition simulating automaton of t is de�ned as anFSM At = (ΣAt , QAt , qAt

0 ,→At) with28



5.2 How It Does Work� ΣAt = (ΣAt

I , ΣAt

O , ΣAt
τ ) with� ΣAt

I = {notifyt
s, suessts, looset

s, tokent
s | s ∈ •t},� ΣAt

O = {lokt
s, akUt

s, akLt
s, unlokt

s, got
s | s ∈ •t} ∪

{newTokent
s | s ∈ t•} ∪

{�ret},� ΣAt
τ = {internalLokt

l , internalDonet
l , internalFiret},� QAt = {lokingt(L, l, T ) | L, T ⊆ •t, l = ⊥∨ l ∈ •t} ∪ {�ringt(T ) | T ⊆ •t} ,� qAt

0 = lokingt(∅,⊥, ∅),and →At suh that� lokingt(L, l, T )
{notifyt

s};∅−−−−−−→At
lokingt(L, l, T ∪ {s}) for eah s 6∈ T ,� lokingt(L, l, T )

{looset
s};{akUt

s}−−−−−−−−−→At
lokingt(L, l, T \ {s}) for s ∈ T \ L, s 6= l 6= ⊥,� lokingt(L,⊥, T )

{looset
s};{akUt

s}∪{unlokt
p | p∈L}−−−−−−−−−−−−−−−−−−−−→At

lokingt(∅,⊥, T \{s}) for s∈T \L,� lokingt(L, l, T )
{looset

l
};{akLt

l
}∪{unlokt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T \ {l}),� lokingt(L,⊥, •t)

{internalLokt
l
};{lokt

l
}

−−−−−−−−−−−−→At
lokingt(L, l, •t) for l = min(•t \ L),� lokingt(L, l, •t)

{suesst
l
};∅

−−−−−−→At
lokingt(L ∪ {l},⊥, •t),� lokingt(L, l, T )

{suesst
l
};{unlokt

p | p∈L∪{l}}−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T ) for eah T 6= •t,� lokingt(

•t,⊥, •t)
{internalFiret};{�ret}∪{got

s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At
�ringt(∅),� �ringt(T )

{tokent
s};∅−−−−−→At

�ringt(T ∪ {s}) for eah s 6∈ T , and� �ringt(
•t)

{internalDonet};{newTokent
s | s∈t•}−−−−−−−−−−−−−−−−−−−−−→At

lokingt(∅,⊥, ∅).The implementation of a plae goes through the following phases: First the plae isempty, and the implementation is not sending anything. Then a token arrives and theimplementation noti�es all posttransitions. Then the plae gets loked by some posttran-sition, possibly queueing other loking requests until the lok holding transition sueedsin �ring or releases the lok. If the lok is released another transition from the queueis immediately granted the lok. If the urrent lok holder sueeds in �ring, all othertransitions are noti�ed of the token removal. Then the implementation enters its fourthphase waiting for all transitions to aknowledge said removal, possibly learing pendinglok requests on the way.The internal ations used are as follows:� internalNotifys (plae s noti�es its posttransitions about the arrival of a token)� internalPassTokent
s (plae s sends its token to the transition t)The states of the implementation mirror the phases as follows:� emptys (Plae s is empty.)� prenotifys (Plae s holds a token but has not yet noti�ed its posttransitions.)� unlokeds (Plae s holds a token, has noti�ed its posttransitions but is not yet loked.)� lokeds(t, L) (Plae s is loked by transition t, the transitions in L also sent a lokrequest but have not been granted the lok.) 29



5 Distributed Systems and Linear Time� waitings(t, L, W ) (The token on plae s needs to travel to the transition t, lok re-quests from all transitions in L have been reeived, token removal aknowledgementsfrom all transitions in W have not yet arrived.)De�nition 5.2.2Let N = (SN , TN , F N , MN
0 , ℓN) be a plain net.For every plae s ∈ SN the plae simulating automaton of s is de�ned as an FSM

As = (ΣAs, QAs, qAs
0 ,→As) with� ΣAs = (ΣAs

I , ΣAs

O , ΣAs
τ ) with� ΣAs

I = {lokt
s, akUt

s, akLt
s, unlokt

s, got
s | t ∈ s•} ∪ {newTokent

s | t ∈ •s} ,� ΣAs

O = {notifyt
s, suesst

s, looset
s, tokent

s | t ∈ s•},� ΣAs
τ = {internalNotifys} ∪ {internalPassTokent

s | t ∈ s•} ,� QAs = {emptys, prenotifys, unlokeds} ∪
{lokeds(t, L) | t ∈ s•, L ⊆ s•, t 6∈ L} ∪
{waitings(t, L, W ) | t ∈ s•, W ⊆ s•, t 6∈ W, L ⊆ W} ,� qAs

0 =







prenotifys if s ∈ MN
0emptys otherwise ,and →As suh that� emptys

{newTokent
s};∅−−−−−−−−→As

prenotifys,� prenotifys
{internalNotifys};{notifyt

s | t∈s•}−−−−−−−−−−−−−−−−−−−→As
unlokeds,� unlokeds

{lokt
s};{suessts}−−−−−−−−−−→As

lokeds(t, ∅),� lokeds(t, L)
{loku

s };∅−−−−−→As
lokeds(t, L ∪ {u}) for eah u 6= t, u 6∈ L,� lokeds(t, L)

{unlokt
s};{suessus }−−−−−−−−−−−→As

lokeds(u, L \ {u}) for eah u ∈ L,� lokeds(t, ∅)
{unlokt

s};∅−−−−−−→As
unlokeds,� lokeds(t, L)

{got
s};{looseu

s | u∈s•,u 6=t}
−−−−−−−−−−−−−−−→As

waitings(t, L, s• \ {t}),� waitings(t, L, W )
{loku

s };∅−−−−−→As
waitings(t, L ∪ {u}, W ) for eah u 6∈ L, u ∈ W ,� waitings(t, L, W )

{akLu
s };∅−−−−−→As

waitings(t, L \ {u}, W \ {u}) for eah u ∈ L,� waitings(t, L, W )
{akUu

s };∅−−−−−→As
waitings(t, L, W \ {u}) for eah u 6∈ L, u ∈ W , and� waitings(t, ∅, ∅)

{internalPassTokent
s};{tokent

s}−−−−−−−−−−−−−−−−−→As
emptys.De�nition 5.2.3Let N = (SN , TN , F N , MN

0 , ℓN) be a plain net.The FSM based asynhronous implementation of N , AN , is given by
AN =

∥

∥

∥

x∈SN∪T N

Ax .A proof that the onstrution from De�nition 5.2.1, De�nition 5.2.2, and De�nition 5.2.3is orret, would need a lear notion of orretness. Instead of rede�ning ompleted steptrae equivalene for state mahines however, the following gives behavioural properties30



5.2 How It Does Workof the implementation whih will ultimately be used in Theorem 5.2.1 to show ompletedstep trae equivalene for the overall transformation.The �rst interesting property onerns the reahable state spae of implementations oftransitions.Lemma 5.2.1Let N = (SN , TN , F N , MN
0 , ℓN) be a plain net, let ≤ be a total order over SN , and let

t ∈ TN . Let At be the transition simulating automaton of t.Let q be a reahable state of At.Then β(q) with
β(q) ⇔ q ∈



















lokingt(L, l, T )

∣

∣

∣

∣

∣

∣

∣

∣

∣

L ⊆ T ⊆ •t, ∀s ∈ L, p ∈ •t \ L. s < p,
L = ∅ ∨ l 6= ⊥ ∨ T = •t,
l = ⊥ ∨
(l ∈ T ∧ ∀s ∈ L, p ∈ •t \ (L ∪ {l}). s < l < p)



















∪

{�ringt(T ) | T ⊆ •t}ProofVia indution over the steps neessary to reah q.
β(qAt

0 ) is trivial.Let q, I, O, and q′ suh that q
I;O
−→At

q′ with β(q). The proof of β(q′) happens via asedistintion over the performed step.Case lokingt(L, l, T )
{notifyt

s};∅−−−−−−→At
lokingt(L, l, T ∪ {s}), s /∈ T : Only T hanged, and itbeame larger.Case lokingt(L, l, T )

{looset
s};{akUt

s}−−−−−−−−−→At
lokingt(L, l, T \ {s}), s ∈ T, s 6∈ L, s 6= l 6= ⊥:As only s was removed from T and s /∈ L still L ⊆ T ⊆ •t. Also l 6= ⊥ hene still

L 6= ∅ ∨ l 6= ⊥ ∨ T = •t. And s 6= l thus still l ∈ T .Case lokingt(L,⊥, T )
{looset

s};{akUt
s}∪{unlokt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T \ {s}), s ∈ T \ L:All onditions are trivial.Case lokingt(L, l, T )

{looset
l
};{akLt

l
}∪{unlokt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T \ {l}): All onditionsare trivial.Case lokingt(L,⊥, •t)

{internalLokt
l
};{lokt

l
}

−−−−−−−−−−−−→At
lokingt(L, l, •t), l = min(•t \ L): As the lwas hosen to be the minimum of •t \ L learly l ∈ •t and with the additional fat that

∀s ∈ L, p ∈ •t \ L. s < p also ∀s ∈ L, p ∈ •t \ (L ∪ {l}). s < l < p.Case lokingt(L, l, •t)
{suesst

l
};∅

−−−−−−→At
lokingt(L ∪ {l},⊥, •t): From l ∈ •t follows that afterthe step L ∪ {l} ⊆ •t and from ∀s ∈ L, p ∈ •t \ (L ∪ {l}). s < l < p follows that

∀s ∈ L ∪ {l}, p ∈ •t \ (L ∪ {l}). s < p. The rest is trivial.Case lokingt(L, l, T )
{suesst

l
};{unlokt

p | p∈L∪{l}}−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T ), T 6= •t: All onditionsare trivial. 31



5 Distributed Systems and Linear TimeCase lokingt(
•t,⊥, •t)

{internalFiret};{�ret}∪{got
s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At

�ringt(∅): Trivial.Case �ringt(T )
{tokent

s};∅−−−−−→At
�ringt(T ∪ {s}), s 6∈ T : Trivial.Case �ringt(

•t)
{internalDonet};{newTokent

s | s∈t•}−−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, ∅): All onditions againtrivial. �To shorten the following formulae somewhat, the tuples onstituting the omposed statemahine states will be equipped with a ∼

∈ operator as follows. If q is a tuple of length
n + 1, x

∼
∈ q i� ∃i ≤ n. πi(q) = x ∨ x ∈ πn+1(q). Per onstrution x will always arrysome indies denoting an original transition or plae whih uniquely determine the onlyindex in q where it ould possibly our. Also, keep in mind that the last element of thestate-tuple of the omposed FSMs is the message bu�er. Thus x

∼
∈ q basially means �theomponent denoted by the indies of x is in the state x� or �the message x is urrentlytravelling� depending on whether x is a message or a state.Another property of the transformation onsists of two mappings between the statesof the omposed state mahine and those of the original net. In both mappings thestates prenotifys, unlokeds and lokeds orrespond to full plaes, whereas all other statesorrespond to empty plaes, exept for the duration of transition �rings. While in theoriginal net a transition �res with instantaneous e�ets, the �ring of a transition is alengthy proess in the implementation. The �rst mapping f is oherent with the observableations, i.e. hanges the marking mapped to at the same time as an observable ation isperformed and maps to a marking where all urrently �ring transitions have ompletely�red. The seond mapping f′ maps similarly but only onsiders transitions whih left their�ringt(T ) phase ompleted. While this mapping is not oherent with the observed ations,it helps with the proof of orretness. In partiular it arries the ontat freeness of theoriginal net into the implementation in suh a way that the ontat freeness beomesavailable as an argument at the point where a transition �nishes �ring.De�nition 5.2.4Let N be a plain net and let AN be the FSM based implementation of it.The funtion f : QAN → P(SN) is de�ned as

f(q) =















s ∈ SN

∣

∣

∣

∣

∣

∣

∣

∣

(∄t. got
s

∼
∈ q ∧ (prenotifys

∼
∈ q ∨ unlokeds

∼
∈ q ∨

∃t, L. lokeds(t, L)
∼
∈ q ∨ ∃t. newTokent

s

∼
∈ q)) ∨

∃t ∈ •s, T. �ringt(T )
∼
∈ q















.The funtion f′ : QAN → P(SN) is de�ned as
f′(q) =















s ∈ SN

∣

∣

∣

∣

∣

∣

∣

∣

prenotifys

∼
∈ q ∨ unlokeds

∼
∈ q ∨

∃t, L. lokeds(t, L)
∼
∈ q ∨ ∃t. newTokent

s

∼
∈ q ∨

∃t ∈ s•, T. �ringt(T )
∼
∈ q















.
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5.2 How It Does WorkSome states of the state mahine, although related through above funtions with statesof the net, are in fat never reahed. A prediate is needed whih deides whether anautomaton state is atually a valid state. It will be proven later that only valid states arereahable in the automaton.De�nition 5.2.5Let N be a plain net and let AN be the FSM based implementation of it.Let n = |TN | + |SN |.The prediate α ⊆ QAN is de�ned as α(q) i�(A.a) f(q) ∈ [MN
0 〉,(A.b) f′(q) ∈ [MN
0 〉,(B) ∀x. πn+1(q)(x) ≤ 1,(C.s) notifyt

s

∼
∈ q ⇒ unlokeds

∼
∈ q ∨

∃u, L. lokeds(u, L)
∼
∈ q ∧ u 6= t ∧ t /∈ L ∨

∃u, L, W. waitings(u, L, W )
∼
∈ q ∧ u 6= t ∧ t ∈ W ∧ t /∈ L,(C.t) notifyt

s

∼
∈ q ⇒ ∃L, l, T. lokingt(L, l, T )

∼
∈ q ∧ s /∈ T,(C.e) notifyt

s

∼
∈ q ⇒ suessts 6∼∈ q ∧ tokent

s 6
∼
∈ q ∧ lokt

s 6
∼
∈ q ∧ akUt

s 6
∼
∈ q ∧akLt

s 6
∼
∈ q ∧ unlokt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(D.s) suesst

s

∼
∈ q ⇒ ∃L. lokeds(t, L)

∼
∈ q,(D.t) suesst

s

∼
∈ q ⇒ ∃L, T. lokingt(L, s, T )

∼
∈ q,(D.e) suesst

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧ lokt

s 6
∼
∈ q ∧ akUt

s 6
∼
∈ q ∧akLt

s 6
∼
∈ q ∧ unlokt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(E.s) looset

s

∼
∈ q ⇒ ∃u, L, W. waitings(u, L, W )

∼
∈ q ∧ u 6= t ∧ t ∈ W,(E.t) looset

s

∼
∈ q ⇒ ∃L, l, T. lokingt(L, l, T )

∼
∈ q ∧ s ∈ T ∧ s /∈ L ∨notifyt

s

∼
∈ q,(E.e) looset

s

∼
∈ q ⇒ suesst

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧ akUt

s 6
∼
∈ q ∧akLt

s 6
∼
∈ q ∧ unlokt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(F.s) tokent

s

∼
∈ q ⇒ emptys

∼
∈ q,(F.t) tokent

s

∼
∈ q ⇒ ∃T. �ringt(T )

∼
∈ q ∧ s /∈ T,(F.e) tokent

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ suessts 6∼∈ q ∧ looset

s 6
∼
∈ q ∧ lokt

s 6
∼
∈ q ∧ akUt

s 6
∼
∈ q ∧akLt

s 6
∼
∈ q ∧ unlokt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(G.s) lokt

s

∼
∈ q ⇒ unlokeds

∼
∈ q ∨

∃u, L. lokeds(u, L)
∼
∈ q ∧ u 6= t ∧ t /∈ L ∨

∃L. lokeds(t, L)
∼
∈ q ∧ unlokt

s

∼
∈ q ∨

∃u, L, W. waitings(u, L, W )
∼
∈ q ∧ u 6= t ∧ t ∈ W ∧ t /∈ L,(G.t) lokt

s

∼
∈ q ⇒ ∃L, T. lokingt(L, s, T )

∼
∈ q ∨akLt

s

∼
∈ q, 33



5 Distributed Systems and Linear Time(G.e) lokt
s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ suesst

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧akUt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(H.s) akUt

s

∼
∈ q ⇒ ∃u, L, W. waitings(u, L, W )

∼
∈ q ∧ u 6= t ∧ t ∈ W ∧ t /∈ L,(H.t) akUt

s

∼
∈ q ⇒ ∃L, l, T. lokingt(L, l, T )

∼
∈ q ∧ s /∈ T,(H.e) akUt

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ suessts 6∼∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧ lokt

s 6
∼
∈ q ∧akLt

s 6
∼
∈ q ∧ unlokt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(I.s) akLt

s

∼
∈ q ⇒ ∃u, L, W.waitings(u, L, W )

∼
∈ q ∧ u 6= t ∧ t∈W ∧ t ∈ L ∨

∃u, L, W.waitings(u, L, W )
∼
∈ q ∧ u 6= t ∧ t∈W ∧ t /∈ L ∧ lokt

s

∼
∈ q,(I.t) akLt

s

∼
∈ q ⇒ ∃L, l, T. lokingt(L, l, T )

∼
∈ q ∧ s /∈ T,(I.e) akLt

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ suesst

s 6
∼
∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧akUt

s 6
∼
∈ q ∧ unlokt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(J.s) unlokt

s

∼
∈ q ⇒ ∃L. lokeds(t, L)

∼
∈ q,(J.t) unlokt

s

∼
∈ q ⇒ ∃L, l, T. lokingt(L, l, T )

∼
∈ q ∧ s /∈ L ∧ l 6= s ∨lokt

s

∼
∈ q,(J.e) unlokt

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ suessts 6∼∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧akUt

s 6
∼
∈ q ∧ akLt

s 6
∼
∈ q ∧ got

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(K.s) got

s

∼
∈ q ⇒ ∃L. lokeds(t, L)

∼
∈ q,(K.t) got

s

∼
∈ q ⇒ ∃T. �ringt(T )

∼
∈ q ∧ s /∈ T,(K.e) got

s

∼
∈ q ⇒ notifyt

s 6
∼
∈ q ∧ suesst

s 6
∼
∈ q ∧ looset

s 6
∼
∈ q ∧ tokent

s 6
∼
∈ q ∧lokt

s 6
∼
∈ q ∧ akUt

s 6
∼
∈ q ∧ akLt

s 6
∼
∈ q ∧ unlokt

s 6
∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(L.s) newTokent

s

∼
∈ q ⇒ emptys

∼
∈ q,(L.e) newTokent

s

∼
∈ q ⇒ ∄u, u 6= t. newTokenu

s

∼
∈ q,(M.a) lokingt(L, l, T )

∼
∈ q ⇒ ∀s ∈ T. unlokeds

∼
∈ q ∨

∃u, L′. lokeds(u, L′)
∼
∈ q ∨

∃u, L′, W. waitings(u, L′, W )
∼
∈ q,(M.b) lokingt(L, l, T )

∼
∈ q ⇒

∀s ∈ T \ (L ∪ {l}). unlokeds

∼
∈ q ∨

∃u, L′. lokeds(u, L′)
∼
∈ q ∧ u 6= t ∧ t /∈ L′ ∨

∃L′. lokeds(t, L
′)

∼
∈ q ∧ unlokt

s

∼
∈ q ∨

∃u, L′, W. waitings(u, L′, W )
∼
∈ q ∧ u 6= t ∧ t ∈ W ∧ t /∈ L,(M.) lokingt(L, l, T )

∼
∈ q ⇒ ∀s ∈ L∃L′. lokeds(t, L

′)
∼
∈ q,(M.d) lokingt(L, l, T )

∼
∈ q ∧ l 6= ⊥ ⇒ ∃u, L′. lokedl(u, L′)

∼
∈ q ∧ t 6= u ∧ t ∈ L′ ∨lokt

l

∼
∈ q ∨suesst

l

∼
∈ q ∨looset

l

∼
∈ q,34



5.2 How It Does Work(N.a) �ringt(T )
∼
∈ q ⇒ ∀s ∈ •t \ T. ∃L, W. waitings(t, L, W )

∼
∈ q ∨got

s

∼
∈ q ∨tokent

s

∼
∈ q,(N.b) �ringt(T )

∼
∈ q ⇒ ∀s ∈ T. emptys

∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(N.) �ringt(T )

∼
∈ q ⇒ ∀s ∈ t• \ •t. emptys

∼
∈ q ∧ ∄u. newTokenu

s

∼
∈ q,(N.d1) �ringt(T )

∼
∈ q ⇒ ∀s ∈ t•. ∄u ∈ •s, u 6= t∃T ′. �ringu(T

′)
∼
∈ q,(N.d2) �ringt(T )

∼
∈ q ⇒ ∀s ∈ •t. ∄u ∈ s•, u 6= t∃T ′. �ringu(T

′)
∼
∈ q,(N.d3) �ringt(T )

∼
∈ q ⇒ ∀s ∈ t•. ∄u ∈ s•, u 6= t∃T ′. �ringu(T

′)
∼
∈ q,(O.a) waitings(t, L, W )

∼
∈ q ⇒ ∃T. �ringt(T )

∼
∈ q ∧ s /∈ T,(O.b) waitings(t, L, W )

∼
∈ q ⇒ ∀u ∈ s•\(W ∪ {t})∃L′, l, T. lokingu(L

′, l, T )
∼
∈ q ∧ s /∈T,(O.) waitings(t, L, W )

∼
∈ q ⇒ ∀u ∈ W. looseu

s

∼
∈ q ∨akUu

s

∼
∈ q ∨akLu

s

∼
∈ q,(P.a) lokeds(t, L)

∼
∈ q ⇒ ∀u ∈ L∃L′, T. lokingu(L

′, s, T )
∼
∈ q,(P.b) lokeds(t, L)

∼
∈ q ⇒ ∀u ∈ s• \ L. ∃L′, l, T. lokingu(L

′, l, T )
∼
∈ q ∧ s ∈ T ∨notifyu

s

∼
∈ q ∨gou

s

∼
∈ q,(P.) lokeds(t, L)

∼
∈ q ⇒ ∃L′, l, T. lokingt(L

′, l, T )
∼
∈ q ∧ s ∈ L′ ∨suesst

s

∼
∈ q ∨unlokt

s

∼
∈ q ∨got

s

∼
∈ q,(Q.a) prenotifys

∼
∈ q ⇒ ∀u ∈ s•∃L, l, T. lokingu(L, l, T )

∼
∈ q ∧ s /∈ T, and(R.a) unlokeds

∼
∈ q ⇒ ∀u ∈ s•. ∃L, l, T. lokingu(L, l, T )

∼
∈ q ∧ s ∈ T ∨notifyu

s

∼
∈ q.The invariant α ould have been written more dense, but the presentation used hereemphasises some properties of the terms whih will be useful during the following proofs.First note that onditions (C.*) to (L.*), where the use of * means any harater, alldepend on the presene of some message, whereas onditions (M.*) to (R.*) depend onstates.Furthermore, most terms of the invariant deal just with the ommuniation between atransition t and a plae s without taking any other elements into aount. Conditions(*.s) assert some properties of a plae, onditions (*.t) assert properties of transitions andonditions (*.e) assert exlusiveness of messages.The behavioural relation between the implementation and the original net is as follows:Whenever the implementation produes an output of �ret, the original an �re the tran-sition t, and similarly for sets of transitions as well. 35



5 Distributed Systems and Linear TimeProposition 5.2.1Let N be a plain net and let AN be the FSM based implementation of it.(i) f(qAN
0 ) = MN

0 ∧ f′(qAN
0 ) = MN

0(ii) α(qAN
0 )(iii) If α(q) and q

I;∅
−→AN

q′ then f(q) = f(q′).(iv) If α(q), q
I;O
−→AN

q′, and O 6= ∅ then f(q) {t | �ret∈O}−−−−−−−→N f(q′).(v) If α(q) and q
I;O
−→AN

q′ then α(q′).Proof(i): No messages are travelling initially as per De�nition 3.2.2. From De�nition 5.2.1follows that initially no transition t is in the state �ringt(T ) for any T . Furthermorefrom De�nition 5.2.2 follows that every initially unmarked plae s is in state emptysand that every initially marked plae s is in state prenotifys. Thus f(qAN
0 ) = MN

0 and
f′(qAN

0 ) = MN
0 .(ii): (A.*) by (i), (B) � (L.e) by the already noted fat that initially no messages arepresent. Every transition t is per De�nition 5.2.1 initially in state lokingt(∅,⊥, ∅) thus

T = L = ∅ and l = ⊥ in (M.*) and all hold, as do (N.*). From De�nition 5.2.2 fol-lows that plaes are initially either in state emptys or in state prenotifys. Hene (O.*),(P.*) and (R.*), whereas (Q.a) follows from the fat that every transition t is in statelokingt(∅,⊥, ∅).(iii): Due to Lemma 3.2.1 it su�es to show that the ondition holds for singleton I. FromDe�nition 3.2.2 follows that eah singleton I must orrespond to a step of a omponentFSM. The proof ontinues via ase distintion over all suh possible steps.Case lokingt(L, l, T )
{notifyt

s};∅−−−−−−→At
lokingt(L, l, T ∪ {s}), s /∈ T : The onsumption ofnotifyt

s didn't hange f, neither did the state hange of the transition.Case lokingt(L, l, T )
{looset

s};{akUt
s}−−−−−−−−−→At

lokingt(L, l, T \ {s}), s ∈ T, s 6∈ L, s 6= l 6= ⊥:The onsumption of looset
s didn't hange f, neither did the state hange of the transitionor the reation of akUt

s messages.Case lokingt(L,⊥, T )
{looset

s};{akUt
s}∪{unlokt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T \ {s}), s ∈ T \ L:The onsumption of looset

s didn't hange f, neither did the state hange of the transitionor the reation of the new messages.Case lokingt(L, l, T )
{looset

l
};{akLt

l
}∪{unlokt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T \ {l}): The on-sumption of looset

s didn't hange f, neither did the state hange of the transition orany of the produed messages.Case lokingt(L,⊥, •t)
{internalLokt

l
};{lokt

l
}

−−−−−−−−−−−−→At
lokingt(L, l, •t), l = min(•t \ L): No messagewas onsumed, lokt

l messages don't a�et f and neither do the transition states.Case lokingt(L, l, •t)
{suesst

l
};∅

−−−−−−→At
lokingt(L∪ {l},⊥, •t): Again, suesstl messages don'ta�et f and neither do the lokingt(. . .) states.36



5.2 How It Does WorkCase lokingt(L, l, T )
{suesst

l
};{unlokt

p | p∈L∪{l}}−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T ), T 6= •t: Basially asabove.Case lokingt(

•t,⊥, •t)
{internalFiret};{�ret}∪{got

s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At
�ringt(∅): This step is not possibleas the �ret ation is not an input of any other omponent and is thus visible in the outsidestep, violating the assumption that the step has no observable output.Case �ringt(T )

{tokent
s};∅−−−−−→At

�ringt(T ∪ {s}), s 6∈ T : The tokent
s message does not a�et fand neither do the ontents of T , as long as the transition stays in a state of �ringt(. . .).Case �ringt(

•t)
{internalDonet};{newTokent

s | s∈t•}−−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, ∅): For all s ∈ t•, it might bethe ase that no transition u ∈ •s in state �ringu(. . .) exists any more, but a newTokent

smessage has been reated for exatly those plaes. From α(q) (N.b), (N.) and (K.s)follows that no gou
s messages are urrently travelling towards any postplaes of t.Case emptys

{newTokent
s};∅−−−−−−−−→As

prenotifys, t ∈ •s: While the newTokent
s message has beenonsumed, the state of s hanged to prenotifys thus preserving f.Case prenotifys

{internalNotifys};{notifyt
s | t∈s•}−−−−−−−−−−−−−−−−−−−→As

unlokeds: The plae s ontributes to fwhether it is in state prenotifys or in state unlokeds. The messages produed don'ta�et f.Case unlokeds
{lokt

s};{suessts}−−−−−−−−−−→As
lokeds(t, ∅): The plae s ontributes to f whether it isin state unlokeds or in some state lokeds(. . .). The messages lokt

s and suesst
s don'ta�et f.Case lokeds(t, L)

{loku
s };∅−−−−−→As

lokeds(t, L ∪ {u}), u 6= t, u 6∈ L: As long as the plae sstays in some state lokeds(. . .) it ontributes to f. The message onsumed doesn't a�et
f.Case lokeds(t, L)

{unlokt
s};{suessus }−−−−−−−−−−−→As

lokeds(u, L \ {u}), u ∈ L: As long as the plae sstays in some state lokeds(. . .) it ontributes to f. The messages unlokt
s and suessu

sdon't a�et f.Case lokeds(t, ∅)
{unlokt

s};∅−−−−−−→As
unlokeds: The plae s ontributes to f whether it is instate lokeds(t, ∅) or in unlokeds. The unlokt

s message doesn't a�et f.Case lokeds(t, L)
{got

s};{looseu
s | u∈s•,u 6=t}

−−−−−−−−−−−−−−−→As
waitings(t, L, s• \ {t}): The state of plae sdoes not ontribute to f after this step, but it did not before either, due to the preseneof the got

s message.Case waitings(t, L, W )
{loku

s };∅−−−−−→As
waitings(t, L∪{u}, W ), u 6∈ L, u ∈ W : The state of theplae does not ontribute to f in any state waitings(. . .), neither does the loku

s message.Case waitings(t, L, W )
{akLu

s };∅−−−−−→As
waitings(t, L \ {u}, W \ {u}), u ∈ L: The state of theplae does not ontribute to f in any state waitings(. . .), neither does the akLu

s message.Case waitings(t, L, W )
{akUu

s };∅−−−−−→As
waitings(t, L, W \ {u}), u 6∈ L, u ∈ W : The stateof the plae does not ontribute to f in any state waitings(. . .), neither does the akUu

smessage. 37



5 Distributed Systems and Linear TimeCase waitings(t, ∅, ∅)
{internalPassTokent

s};{tokent
s}−−−−−−−−−−−−−−−−−→As

emptys: The state of the plae does notontribute to f, neither in state waitings(t, ∅) nor in state emptys. The message tokent
sdoes not hange f.(iv): As before, only singleton I need to be onsidered. From De�nition 3.2.2, De�ni-tion 5.2.1 and De�nition 5.2.2 follows that the only visible outputs are of the form �ret.Thus the only possible step is lokingt(

•t,⊥, •t)
{internalFiret};{�ret}∪{got

s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At
�ringt(∅).As N is assumed ontat free, it su�es to show that •t ⊆ f(q) and f(q′) = (f(q) \ •t)∪ t•.From α(q) (M.) follows that every preplae s of t is in some state lokeds(t, . . .). From(K.t) follows that no got

s message is travelling, as t is not in any state �ringt(. . .) in q.Thus every preplae of t is in f(q).For every preplae s of t one message got
s is produed, e�etively removing s from f(q′)unless s is also a postplae of t, whih is now in state �ringt(∅). That s does not remainin f(q′) due to some onurrently �ring transition u whih also has s in its postset followsfrom α(q) (M.) (every preplae s of t is in a state lokeds(t, . . .)), (N.) (postplaes p of

u whih are not in •u are in state emptyp), (N.b) and (N.a) (preplaes p of u are eitherin state emptyp or in a state waitingp(. . .) or a gou
p or a tokenu

p message is travelling) and(F.s) and (K.s) (either message is inompatible with the fat that s is loked to t).Thus f(q′) = (f(q) \ •t) ∪ t•.(v): (A.a) from (iii) and (iv).Some parts of (C.e) an be proven from the rest of the invariant. No suesst
s an exist as(C.t) and (D.t). No tokent

s an exist as (C.t) and (F.t). No unlokt
s an exist as (C.s) and(J.s). No got

s an exist as (C.s) and (K.s). No newTokenu
s an exist as (C.s) and (L.s).Thus I will instead of (C.e) show notifyt

s

∼
∈ q ⇒ lokt

s 6
∼
∈ q ∧ akUt

s 6
∼
∈ q ∧ akLt

s 6
∼
∈ q.Similarly for (D.e) via the following dedutions. No notifyt

s an exist as (C.e). No looset
san exist as (D.s) and (E.s). No tokent

s an exist as (D.s) and (F.s). No akUt
s an existas (D.s) and (H.s). No akLt

s an exist as (D.s) and (I.s). No got
s an exist as (D.t)and (K.t). No newTokenu

s an exist as (D.s) and (L.s). Assume now that lokt
s exists.Then from (D.s) and (G.s) follows that also unlokt

s exists. Assume that unlokt
s exists.Then from (D.t) and (J.t) follows that also lokt

s exists. Thus I will instead of (D.e) showsuessts ∼
∈ q ⇒ lokt

s 6
∼
∈ q ∨ unlokt

s 6
∼
∈ q.Repeating the same for (E.e). No suessts an exist as (D.e). No tokent

s an exist as (E.s)and (F.s). No akUt
s an exist as (E.t), (C.e) and (H.t). No akLt

s an exist as (E.t), (C.e)and (I.t). No unlokt
s an exist as (E.s) and (J.s). No got

s an exist as (E.s) and (K.s).No newTokenu
s an exist as (E.s) and (L.s). Thus (E.e).Repeating the same for (F.e). No notifyt

s an exist as (C.e). No suesst
s an exist as(D.e). No looset

s an exist as (E.e). No lokt
s an exist as (F.s) and (G.s). No akUt

s anexist as (F.s) and (H.s). No akLt
s an exist as (F.s) and (I.s). No unlokt

s an exist as(F.s) and (J.s). No got
s an exist as (F.s) and (K.s). Thus I will instead of (F.e) showtokent

s

∼
∈ q ⇒ ∄u. newTokenu

s

∼
∈ q.38



5.2 How It Does WorkRepeating the same for (G.e). No notifyt
s an exist as (C.e). No suesst

s an exist as (D.e).No tokent
s an exist as (F.e). No got

s an exist as (G.t), (I.t), and (K.t). No newTokenu
san exist as (G.s) and (L.s). Thus I will instead of (G.e) show lokt

s

∼
∈ q ⇒ akUt

s 6
∼
∈ q.Repeating the same for (H.e). No notifyt

s an exist as (C.e). No suesst
s an exist as (D.e).No looset

s an exist as (E.e). No tokent
s an exist as (F.e). No lokt

s an exist as (G.e). Nounlokt
s an exist as (H.s) and (J.s). No got

s an exist as (H.s) and (K.s). No newTokenu
san exist as (H.s) and (L.s). Thus I will instead of (H.e) show akUt

s

∼
∈ q ⇒ akLt

s 6
∼
∈ q.Repeating the same for (I.e). No notifyt

s an exist as (C.e). No suesst
s an exist as (D.e).No looset

s an exist as (E.e). No tokent
s an exist as (F.e). No akUt

s an exist as (H.e).No unlokt
s an exist as (I.s) and (J.s). No got

s an exist as (I.s) and (K.s). No newTokenu
san exist as (I.s) and (L.s). Thus (I.e).Repeating the same for (J.e). No notifyt

s an exist as (C.e). No suesst
s an exist as(D.e). No looset

s an exist as (E.e). No tokent
s an exist as (F.e). No akUt

s an exist as(H.e). No akLt
s an exist as (I.e). No got

s an exist as (J.t), (K.t), (G.t), and (I.t). NonewTokenu
s an exist as (J.s) and (L.s). Thus (J.e).Repeating the same for (K.e). No notifyt

s an exist as (C.e). No suesst
s an exist as(D.e). No looset

s an exist as (E.e). No tokent
s an exist as (F.e). No lokt

s an exist as(G.e). No akUt
s an exist as (H.e). No akLt

s an exist as (I.e). No unlokt
s an exist as(J.e). No newTokenu

s an exist as (K.s) and (L.s). Thus (K.e).Due to Lemma 3.2.1 it su�es to show that the other onditions holds for singleton
I. From De�nition 3.2.2 follows that eah singleton I must orrespond to a step of aomponent FSM. The proof ontinues via ase distintion over all suh possible steps.The attentive reader might suspet now that a ase distintion over many ases, eahproving quite a lot of invariant terms, is rather tedious. It is indeed quite a lot of work,so whoever �nds it too lengthy is suggested to skip the rest of this proof.While referring to the lauses of De�nition 5.2.5, the following uses (X) to denote therespetive lause of α(q) and (X)' to denote lauses from α(q′).Case lokingt(L, l, T )

{notifyt
s};∅−−−−−−→At

lokingt(L, l, T ∪ {s}), s /∈ T :Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as no messages are produed. (*.s)'as no state of a plae implementation is modi�ed, no new message was generated, (G.s)'asserts the existene of an unlokt
s message, (I.s)' asserts the existene of a lokt

s message,and neither was onsumed. (*.e)' as no new messages have been produed.(C.t)' the only value added to T is s and only one notifyt
s message existed in q as per(B). (D.t)' and (G.t)' with the two existing values L and T ∪ {s} and the fat that noakLu

p message was onsumed. (E.t)' as the only notifyt
p message onsumed has p = s, swas added to T and s /∈ L. (F.t)' from (F.t). (H.t)' from (C.e) as only s was added, andno akUt

s message an exist. (I.t)' with the same argument for akLt
s. (J.t)' as nothingrelevant hanged from (J.t). And (K.t)' from (K.t). 39



5 Distributed Systems and Linear Time(M.a)' and (M.b)' from (C.s), (M.)' from the fat that L stayed unhanged. (M.d)' asno relevant messages have been onsumed and l didn't hange. (N.*)' and (O.a)' as noterms therein have hanged. (O.b)' from (C.s) sine if s is in some state waitings(u, L, W )then t ∈ W and u in (O.b)' does not range over t. No terms in (O.)' and (P.a)' havehanged, and (P.b)' stays true as well, as while the notifyt
s message has been onsumed,

s was added to T . (P.)' as no relevant messages have been onsumed and only T washanged. (Q.a)' from (C.s) and (R.a)' with the same argument as (P.b)'.Case lokingt(L, l, T )
{looset

s};{akUt
s}−−−−−−−−−→At

lokingt(L, l, T \ {s}), s ∈ T, s 6∈ L, s 6= l 6= ⊥:Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' from (E.e).(C.s)' as no plae state was hanged. No notifyt
s message existed per s ∈ T and (C.t).Thus (C.t)' and (C.e)'.(D.s)' as no plae state was hanged. (D.t)' as only T was hanged. (D.e)' from (E.e).(E.s)' as no plae state was hanged. (E.t)' as only s was removed from T , L remainedequal, no seond looset

s message existed as per (B), and no notifyu
p message was onsumed.(E.e)' from (B).(F.s)' as no plae state was hanged. (F.t)' from (F.t). (F.e)' from (E.e).(G.s)' as no plae state was hanged. (G.t)' as only T was hanged and no akLu

p messagewas onsumed. (G.e)' as with s 6= l no lokt
s message an exists per (G.t) and (E.e).(H.s)' from (E.s) and (M.b). (H.t)' trivially from the performed step. (H.e)' from (E.e)whih enfores that no akLt

s message an exist.(I.s)' as no plae state was hanged and no loku
p was onsumed. (I.t)' as something wasremoved from T .(J.s)' as no plae state was hanged. (J.t)' as only T was hanged and no loku

p wasonsumed.(K.s)' as no plae state was hanged. (K.t)' from (K.t).(L.s)' as no plae state was modi�ed. (L.e)' as no newTokenu
p messages were produed.Terms only improved for (M.a)', (M.b)', (M.)', (N.*)', (O.a)', (O.b)', (P.a)', (P.)', and(Q.a)'. (M.d)' as the onsumed looset

s message has s 6= l. (O.)' as the looset
s was replaedby the akUt

s message. Note that s is in a state waitings(. . .) from (E.s). Thus (P.b)' and(R.a)'.Case lokingt(L,⊥, T )
{looset

s};{akUt
s}∪{unlokt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T \ {s}), s ∈ T \ L:Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as an earlier akUt

s message isexluded per (E.e) and the unlokt
p are unproblemati as per (J.t), (G.t), and (I.t).(C.s)' as no plae state was hanged. (C.t)' as T beame smaller. As the only ritialmessage for (C.e)' is the akUt

s message, it su�es that from (C.t) follows that no notifyt
smessage existed in q.40



5.2 How It Does WorkFrom (D.t) follows that no suesst
p message an exist in q. Thus (D.*)'.(E.s)' as no plae state was hanged. (E.t)' as the only element removed from T was s.There existed only one looset

s message per (B) and that was onsumed.From (F.s) follows that no tokenu
s message existed before. Thus (F.*)'.(G.s)' as no plae state was hanged and no unloku

r message was onsumed. Assume somelokt
r

∼
∈ q. Then per (G.t) there must also exist some akLt

r

∼
∈ q, whih was not onsumed.Thus (G.t)'. From (I.t), no suh akLt

r message an exist for any s ∈ T however, henelokt
s 6

∼
∈ q and thus (G.e)'.(H.s)' from (E.s) and (M.b). (H.t)' trivially from the performed step. (H.e)' from (E.e)whih enfores that no akLt

s message an exist.(I.s)' as no plae state was hanged and no loku
r was onsumed. (I.t)' as something wasremoved from T .(J.s)' as no plae state was hanged. (J.t)' as L beame smaller and no loku

r was on-sumed.From (K.t) follows that no got
r message an exist. Thus (K.*)'. (L.s)' as no plae statewas modi�ed. (L.e)' as no newTokenu

r messages were produed.Terms only improved for (M.a)', (M.)', (N.*)', (O.a)', (O.b)', (P.a)', and (Q.a)'.(M.b)' from (M.) and the newly produed unlokt
p messages. (M.d)' as the only looseu

rmessage onsumed has r = s and u = t, but t is in state lokingt(∅,⊥, T \ {s}) after thestep. (O.)' as the looset
s message was replaed by the newly produed akUt

s message.Note that s is in a state waitings(. . .) from (E.s). Thus (P.b)'. (P.)' with the newlyprodued unlokt
p messages. (R.a)' with the same argument as (P.b)'.Case lokingt(L, l, T )

{looset
l
};{akLt

l
}∪{unlokt

p | p∈L}−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T \ {l}):Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' from (E.e) and (J.t), (G.t), and(I.t).(C.s)' as no plae state was hanged. (C.t)' as T beame smaller. From (C.t) with theperformed step follows that no notifyt

r message existed for r = l. Thus (C.e)'.(D.s)' as no plae state was hanged. (D.t)' as only suesstr messages with r = l arepossible from (D.t) but (E.e) and thus no suh message exists. Thus also (D.e)'.(E.s)' as no plae state was hanged. (E.t)' as the only element removed from T was l.The only problemati message is thus looset
l whih was onsumed however and existedonly one as per (B). Also no notifyu

r message was onsumed.From (F.t) no messages tokent
r an exist. Thus (F.*)'.(G.s)' as no plae state was hanged and no unloku

r message was onsumed. (G.t)' asfor a possible lokt
l

∼
∈ q there is akLt

l

∼
∈ q′ and for some lokt

r

∼
∈ q with r ∈ L there must41



5 Distributed Systems and Linear Timebe an akLt
r message already as per (G.t). Thus (G.t)'. (G.e)' as neither loku

r nor akUu
rmessages have been produed.(H.s)' as no plae state was hanged. (H.t)' as T beame smaller. (H.e)' as the only newakLu

r message has r = l and u = t and (E.e).(I.s)' as no plae state was hanged and no loku
r was onsumed. (I.t)' as T beame smallerand l was spei�ally removed. (J.s)' as no plae state was hanged. (J.t)' as no loku

rmessage was onsumed and no plae equals ⊥ or is in the empty set.From (K.t) follows that no �ret
r message existed, thus (K.*)'. (L.s)' as no plae state wasmodi�ed. (L.e)' as no newTokenu

r messages were produed.Terms only improved for (M.a)' (M.)' (N.*)' (O.a)', (O.b)', and (Q.a)'. (M.b)' as for all
s ∈ L (M.) implies that lokeds(t, L

′)
∼
∈ q for some L′ and the step generated respetiveunlokt

s messages. (M.d)' as the only message onsumed was looset
l and in q′ the transition

t is in the state lokingt(∅,⊥, T \ {l}) whih is unproblemati for (M.d)'. (O.)' as thelooset
l message was replaed by akLt

l . Per (P.a) t was only in one L of a lokedr(u, L)
∼
∈ q,namely with r = l. From (E.s) however, that state is no longer present. Thus (P.a)' andwith the fat that only l was removed from T also (P.b)'. (P.)' with the newly produedunlokt

p messages. From (P.a), (E.s), and that only l was removed also (R.a)'.Case lokingt(L,⊥, •t)
{internalLokt

l
};{lokt

l
}

−−−−−−−−−−−−→At
lokingt(L, l, •t), l = min(•t \ L):Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' from (G.t) and (I.t).From (C.t) follows that notifyt

l 6
∼
∈ q. Thus (C.*)'. From (D.t) follows that no suesstpmessage an exist in q. Thus (D.*)'.(E.s)' as no plae state was hanged. (E.t)' as no notifyu

p messages were onsumed andthe �rst and last omponents of the transition state didn't hange.From (F.t) no messages tokent
p an exist. Thus (F.*)'. With (H.t) for (H.*)'. With (I.t)for (I.*)'. With (K.t) for (K.*)'.The above argument with (G.t) and (I.t) works towards (G.*)' for all messages but thenewly produed lokt

l . Still (G.s)' together with (M.b), (G.t)' from the step, (G.e)' fromthe fat that no akUt
l message exists per (H.t).(J.s)' as no plae state was hanged. Assume there existed some unlokt

p

∼
∈ q. If p 6= leverything stays well, if p = l then the appropriate lokt

p was produed, thus (J.t)'.(L.s)' as no plae state was modi�ed. (L.e)' as no newTokenu
p messages were produed.Terms only improved for (M.a)', (M.b)', (M.)', (N.*)', (O.*)', (P.*)', (Q.*)' and (R.*)'.(M.d)' with the newly produed lokt

l message.Case lokingt(L, l, •t)
{suesst

l
};∅

−−−−−−→At
lokingt(L ∪ {l},⊥, •t):Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as no messages are produed. From(C.t) follows that no notifyt

p message an exist. Thus (C.*)'.42



5.2 How It Does WorkFrom (B) and (D.t) follows that exatly one suesst
p message an exist, whih has p = l.It was onsumed though, so (D.*)'.(E.s)' as no plae state was hanged. (E.t)' as no notifyu

p messages were onsumed, thelast omponent of the transition state didn't hange, and the only element added to Lwas l for whih (D.e) guarantees that no looset
l message exists.From (F.t) follows that no �ret

p message exists. Thus (F.*)'.From (G.t) and (I.t) follows that every lokt
p message must have p = l. By (D.e) no suhmessage exists and (G.*)'.From (H.t) follows that no akUt

p message exists and (H.*)'. Using (I.t), (I.*)' followssimilarly.(J.s)' as no plae state was hanged. (J.t)' as the only element added to L was l.(K.*)' again via (K.t). (L.s)' as no plae state was modi�ed. (L.e)' as no newTokenu
pmessages were produed.Terms only improved for (M.a)', (M.b)', (N.*)', (O.*)', (P.b)', (Q.a)', and (R.a)'.(M.)' with (D.s). (M.d)' as the only message onsumed was suesstl and in q′ thetransition t is in the state lokingt(L∪{l},⊥, •t) whih is unproblemati for (M.d)'. (P.a)'as from (D.s) follows that l is in a state lokedl(t, L

′) with t /∈ L′ per De�nition 5.2.2.(P.)' as only the suesst
l message was removed and l was added to L.Case lokingt(L, l, T )

{suesst
l
};{unlokt

p | p∈L∪{l}}−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, T ), T 6= •t:Then α(q′) as follows: (A.b)' as f′ didn't hange. Assume some unlokt

p message alreadyexisted with p = l or p ∈ L. If p = l there is a ontradition with (D.e), hene p ∈ L. For
p ∈ L however (J.t), (G.t) and then (I.t) onstitute a ontradition as well. So no suhunlokt

p message existed and (B)'.(C.s)' as no plae state was modi�ed. (C.t)' as T remained equal. (C.e)' as no loku
r ,akUu

r , or akLu
r messages have been produed.From (D.t) and (B) follows that no further suesst

r message existed. Thus (D.*)'.(E.s)' as no plae state was hanged. (E.t)' as no notifyu
r messages were onsumed andthe last omponent of the transition state didn't hange.From (F.t) follows that no �ret

r message exists. Thus (F.*)'. From (K.t) similarly (K.*)'.(G.s)' as no plae state was modi�ed and no unloku
r message was onsumed. (G.t)' asfrom (D.e) no lokt

l existed and for all other lokt
r

∼
∈ q (G.t) guarantees that there is anakLt

r

∼
∈ q whih was not onsumed. (G.e)' as neither loku

r nor akUu
r messages have beenprodued.(H.s)' as no plae state was modi�ed. (H.t)' as T remained equal. (H.e)' as neither akUu

rnor akLu
r messages have been reated. 43



5 Distributed Systems and Linear Time(I.s)' as no plae state was modi�ed and no loku
r have been onsumed. (I.t)' as T remainedequal.As argued for (B)' no unlokt

p messages existed before the step. Now however, unlokt
pmessages exist, one with p = l and the others with p ∈ L. For the one with p = l (J.s)'follows from (D.s). For those with p ∈ L (J.s)' from (M.). (J.t)' from the performedstep.(L.s)' as no plae state was modi�ed. (L.e)' as no newTokenu

p messages were produed.Terms only improved for (M.a)', (M.)', (N.*)', (O.*)', (P.b)', (Q.a)', and (R.a)'.(M.b)' from (D.s), (M.), and the newly produed unlokt
p messages. (M.d)' as the onlymessage onsumed was suesst

l and in q′ the transition t is in the state lokingt(∅,⊥, T )whih is unproblemati for (M.d)'.Assume a plae p existed in state lokedp(u, L) with t ∈ L. Then p = l from (P.a). Thenthere is a ontradition with (D.s). Thus no suh plae exists and (P.a)'. (P.)' as thesuesstl message was replaed by an unlokt
l message.Case lokingt(

•t,⊥, •t)
{internalFiret};{�ret}∪{got

s | s∈•t}−−−−−−−−−−−−−−−−−−−−→At
�ringt(∅):Then α(q′) as follows: (A.b)' as all preplaes s of t are urrently in a state lokeds(t, L) forsome L per (M.). Thus f′ didn't hange. The �ret message is an output of the omposedstate mahine and does not a�et (B)'. From (K.t) no got

p message existed before the step,thus (B)'.From (C.t) no notifyt
p message existed, thus (C.*)'. From (D.t) similarly (D.*)'. From(E.s) and (M.) thus (E.*)'. From (F.t) thus (F.*)'. From (G.t) and (I.t) similarly (G.*)'.From (H.t) thus (H.*)'. From (I.t) thus (I.*)'. From (J.t), (G.t), and (I.t) thus (J.*)'.(K.s)' from (M.). (K.t)' trivially from the performed step.(L.s)' as no plae state was modi�ed. (L.e)' as no newTokenu

p messages were produed.Terms only improved for (M.*)', (O.a)', and (O.)'.(N.a)' from the produed got
s messages. (N.b)' as T is empty after the step.From (M.) follows that every plae s in •t is in state lokings(t, L) with some L. From(K.t) no got

s message existed before the step.From (A.b) and De�nition 5.2.4 then •t ⊆ f′(q). As N was assumed to be ontat free,then for every plae s in t• \ •t, s /∈ f′(q). Thus s must be in state emptys and nonewTokenu
s message exists. Thus (N.)'.Also from (A.b) and De�nition 5.2.4, •t ⊆ f(q). As N was assumed to be ontat free, thenfor every plae s in t• \ •t, s /∈ f(q). Thus there annot exist u ∈ •s with �ringu(T

′)
∼
∈ qfor some T ′. Hene (N.d1)'.44



5.2 How It Does WorkAssume some u 6= t with �ringu(U)
∼
∈ q for some U and p ∈ •t ∩ •u existed. Then per(M.) and (N.b) p /∈ U . With (M.), (N.a), and (K.s) then tokenu

p

∼
∈ q. But then (F.s)and (M.) form a ontradition. Thus no suh u an exist and (N.d2)'.As already argued for (N.)', for every s ∈ t• \ •t, s /∈ f′(q) and per De�nition 5.2.4 no

u ∈ s• with �ringu(. . .)
∼
∈ q an exist. For s ∈ •t the same arguments as for (N.d2)' anbe applied, again showing that no u ∈ s• with �ringu(. . .)

∼
∈ q exists. Thus no suh uexists for any s ∈ t• and (N.d3)'.Assume there existed some plae p with waitingp(u, L, W )
∼
∈ q and t ∈ p• \ (W ∪ {u}).Then there would be a ontradition between (O.b) and the initial state of the step. Thusno suh plae exists and (O.b)'. Using (P.a) a similar argument shows (P.a)'.(P.b)' and (P.)' with the produed got

s messages. (Q.a)' and (R.a)' as all preplaes p of
t are in a state lokedp(t, L) for some L per (M.).Case �ringt(T )

{tokent
s};∅−−−−−→At

�ringt(T ∪ {s}), s 6∈ T :Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as no messages are produed. Thusalso (*.e)'.From (C.t) no notifyt
p message existed, thus (C.*)'. Similarly (D.t) shows (D.*)'. (E.t)and (C.t) thus (E.*)'. (G.t) and (I.t) thus (G.*)'. (H.t) thus (H.*)'. (I.t) thus (I.*)'.(J.t), (G.t), and (I.t) thus (J.*)'.(F.s)' as no plae state was hanged. (F.t)' as the only plae added to T was s and via(B) no seond tokent

s message existed.(K.s)' as no plae state was hanged. (K.t)' as the only plae added to T was s and via(F.e) no got
s message existed.(L.s)' as no plae state was modi�ed. (L.e)' as no newTokenu

p messages were produed.Terms only improved for (M.*)', (N.)', (N.d1)', (N.d2)', (N.d3)', (O.b)', (O.)', (P.*)',(Q,a)' and (R.a)'.(N.a)' as the only message onsumed was tokent
s and s was added to T . (N.b)' from (F.s)and (F.e). (O.a)' as the only plae added to T was s and (F.s) enfores that s is in stateemptys.Case �ringt(

•t)
{internalDonet};{newTokent

s | s∈t•}−−−−−−−−−−−−−−−−−−−−−→At
lokingt(∅,⊥, ∅):Then α(q′) as follows: From (A.b) and De�nition 5.2.4 follows that •t ⊆ f′(q′). As N wasassumed to be ontat free, thus f′(q) [{t}〉N (f′(q) \ •t) ∪ t•. With the performed stepand (N.d2) follows that f′(q′) = (f′(q) \ •t) ∪ t•. Thus (A.b)'.For every s ∈ t• either s ∈ t• \ •t or s ∈ •t. Then (B)' from (N.b) and (N.).From (C.t) no notifyt

p message existed, thus (C.s)' and (C.t)'. As neither notifyu
p , loku

p ,akUu
p nor akLu

p messages have been produed (C.e)'. 45



5 Distributed Systems and Linear TimeFrom (D.t) similarly (D.s)' and (D.t)'. As neither suessu
p , loku

p , nor unloku
p messageshave been produed (D.e)'.From (E.t) and (C.t) similarly (E.s)' and (E.t)'. (G.t) and (I.t) thus (G.s)' and (G.t)'.(G.e)' as neither loku

p nor akUu
p messages have been produed.(H.t) thus (H.s)' and (H.t)'. (H.e)' as neither akUu

p nor akLu
p messages have beenprodued.(I.t) thus (I.s)' and (I.t)'. (J.t), (G.t) and (I.t) thus (J.s)' and (J.t)'. (K.t) thus (K.s)'and (K.t)'.(F.t) thus (F.s)' and (F.t)'. Assume tokenu

p

∼
∈ q. For u = t (F.t) is a ontradition withthe performed step, thus u 6= t. For p ∈ t• there is a ontradition with (F.t) and (N.d3).Thus (F.e)'.(L.s)' and (L.e)' from (N.b) and (N.). (M.*)' as all three arguments of the new state areempty.Terms only improved for (N.a)', (N.d1)', (N.d2)', (N.d3)', (O.b)', (O.)', (P.*)', (Q.a)'and (R.a)'.Now onsider (N.b)' and (N.)', whih are problemati as new newTokent

s messages havebeen produed. Take any s ∈ t•. From (N.d3) there exists no transition u 6= t with s ∈ •uand �ringu(. . .)
∼
∈ q. Thus (N.b)'. From (N.d1) there exists no transition u 6= t for whih�ringu(. . .)

∼
∈ q and s ∈ u•. Thus (N.)'.From (N.b) follows that no preplae p of t an be in a state waitingp(t, L, W ) for any Land W . Thus (O.a)'.Case emptys

{newTokent
s};∅−−−−−−−−→As

prenotifys, t ∈ •s:Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as no messages are produed. Thusalso (*.e)'.From (C.s) follows that no notifyu
s messages ould have existed in q. Thus (C.*)'. Similarlyfrom (D.s) follows (D.*)'. From (E.s) follows (E.*)'.From (F.e) follows that no tokenu
s message existed. Hene (F.*)'.From (G.s) follows that no loku
s message existed. Thus (G.*)'. From (H.s) similarly(H.*)'. (I.s) thus (I.*)'. (J.s) thus (J.*)'. (K.s) thus (K.*)'.(L.s)' as the only plae whih hanged state was s and no seond newTokenu

s existed,neither for u = t as per (B) nor for u 6= t per (L.e).Terms only improved for (M.*)', (N.a)', (N.d1)', (N.d2)', (N.d3)', (O.*)', (P.*)', and(R.a)'. (N.b)' and (N.)' as for the only plae whih hanged state there existed anewTokent
s message.46



5.2 How It Does WorkTake a posttransition u of s. If u is in a state �ringu(U) then s ∈ U would lead to aontradition with (N.b). Thus s /∈ U and with s ∈ •u then s ∈ •u \ U . Then from(N.a) follows that either a gou
s or a tokenu

s message exists. That leads to a ontraditionvia (K.e) and (F.e) respetively. If u is in a state lokingu(L, l, T ) then s ∈ T leadsto a ontradition with (M.a). The only remaining possibility is that u is in a statelokingu(L, l, T ) with s /∈ T . Thus (Q.a)'.Case prenotifys
{internalNotifys};{notifyt

s | t∈s•}−−−−−−−−−−−−−−−−−−−→As
unlokeds:Then α(q′) as follows: (A.b)' as f′ didn't hange. From (C.s) follows that no notifyt

smessages existed yet, so (B)'.(C.s)' trivially from the performed step. (C.t)' from (Q.a). (C.e)' from (G.s), (H.s), and(I.s) whih respetively ensure that no lokt
s, no akUt

s, and no akLt
s messages exist.From (D.s) follows that no suesst

s message exists, thus (D.*)'. Similarly from (E.s)follows (E.*)'. From (F.s) follows (F.*)'. (G.s) thus (G.*)'. (H.s) thus (H.*)'. (I.s) thus(I.*)'. (J.s) thus (J.*)'. (K.s) thus (K.*)'. (L.s) thus (L.*)'.Terms only improved for (M.*)', (N.*)', (O.*)', (P.*)', and (Q.a)'.(R.a)' from the produed notifyt
s messages.Case unlokeds

{lokt
s};{suessts}−−−−−−−−−−→As

lokeds(t, ∅):Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as from (G.e) no suesst
s ouldhave existed.(C.s)' as the only transition u for whih a notifyu

s message would be problemati is t. Butper (G.e) no notifyt
s message exists. Thus also (C.e)'. (C.t)' as no state of a transitionwas hanged.From (D.s) no suessu

s message existed. Thus (D.*)'. From (E.s) similarly (E.*)'. (F.s)thus (F.*)'.(G.s)' as the only transition u for whih a loku
s message would be problemati is t. Butthe lokt

s message was onsumed and per (B) no seond one exists. Thus also (G.e)'.(G.t)' as no state of a transition was hanged and no akLu
p message was onsumed.From (H.s) no akUu

s message existed. Thus (H.*)'. (I.s) thus similarly (I.*)'. (J.s) thus(J.*)'. (K.s) thus (K.*)'. (L.s) thus (L.*)'.Terms only improved for (M.a)', (M.)', (N.*)', (O.*)', (Q.a)', and (R.a)'.(M.b)' as the only problemati transitions ould be t, but from (G.t) and (I.s) followsthat t is in a state lokingt(L, l, T ) with l = s. (M.d)' as the onsumed lokt
s message hasbeen replaed by the suesst

s message.(P.a)' from the performed step. (P.b)' from (R.a). (P.)' with the produed suesstsmessage. 47



5 Distributed Systems and Linear TimeCase lokeds(t, L)
{loku

s };∅−−−−−→As
lokeds(t, L ∪ {u}), u 6= t, u 6∈ L:Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as no messages are produed. Thusalso (*.e)'.(C.s)' as the only transition added to L was u and from (G.e) no notifyu

s message existed.(C.t)' as no state of a transition was hanged.(D.s)' with the new value L ∪ {u}. (D.t)' as no state of transition was hanged.From (E.s) follows that no loosev
s message existed. Thus (E.*)'. Similarly (F.*)' followsfrom (F.s).(G.s)' as the only transition v for whih a lokv

s message would be problemati is u. Butthe loku
s message was onsumed and per (B) no seond one exists. (G.t)' as no state ofa transition was hanged and no akLu

p was onsumed.From (H.s) follows that no akUv
s message existed. Thus (H.*)'. Similarly (I.*)' followsfrom (I.s).(J.s)' with the new value L ∪ {u}. Assume a unlokv

s

∼
∈ q exists. The only problematiase for (J.t)' is v = u as no transition state was hanged and only loku

s was onsumed.However no unloku
s message exists as (J.s) and t 6= u from the performed step lead to aontradition otherwise. Thus (J.t)'.(K.s)' with the new value L ∪ {u}. (K.t)' as no state of a transition was hanged.From (L.s) follows that no newTokenv

s message existed. Thus (L.*)'.Terms only improved for (M.a)', (M.)', (N.*)', (O.*)', (P.b)', (P.)', (Q.a)', and (R.a)'.(M.b)' as the only value added to L was u and from (G.t) and (I.s) follows that u is in astate lokingu(L, l, T ) with l = s. (M.d)' as the only onsumed lokv
s message has v = uand u was added to L.(P.a)' with the same argument as (M.b)'.Case lokeds(t, L)

{unlokt
s};{suessus }−−−−−−−−−−−→As

lokeds(u, L \ {u}), u ∈ L:Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as per (D.s) no suessu
s messageould have existed before.(C.s)' as something was removed from L. (C.t)' as no state of a transition was hanged.(C.e)' as no lokv

s , no akUv
s , and no akLv

s messages have been produed.(D.s)' trivially from the performed step. (D.t)' from (P.a). No unloku
s message ouldhave existed as (J.s). Thus (D.e)'.From (E.s) follows that no loosev

s message an exist. Thus (E.*)'. Similarly from (F.s)follows (F.*)'.Assume some lokv
s message exists in q. For v 6= t and v 6= u nothing relevant hangedin (G.s)'. For v = t the unlokt

s message was removed, but t /∈ L from De�nition 5.2.248



5.2 How It Does Workso (G.s)' as far as a possible lokt
s is onerned. For v = u no loku

s message ould haveexisted as (G.s) and u ∈ L. Thus (G.s)'.(G.t)' as no state of a transition was hanged and no akLu
p was onsumed. (G.e)' as noakUv

p message was reated.From (H.s) follows that no akUv
s message existed. Thus (H.*)'. The same argument with(I.s) shows (I.*)'.(J.s)' as the only problemati message ould be unlokt

s but it was onsumed and per (B)no seond one exists. (J.t)' as no state of a transition was hanged and no lokv
p messagewas onsumed.(K.s)' as the only problemati message ould be got

s but suh a message does not existsas per (J.e). (K.t)' as no state of a transition was hanged.From (L.s) follows that no newTokenv
s message existed. Thus (L.*)'.Terms only improved for (M.a)', (N.*)', (O.*)', (P.a), (Q.a)', and (R.a)'.To show (M.b)', assume some transition v exists suh that lokingv(L

′, l, T )
∼
∈ q and

s ∈ T \ (L′ ∪{l}). If v 6= t and v 6= u then nothing relevant hanged in (M.b)'. For v = uthere is a ontradition with (M.b) as u ∈ L. For v = t (M.b)' holds as t /∈ L. Thus(M.b)'.The only transition problemati for (M.)' is t, but from (J.t) either t is in a statelokingt(L, l, T ) with s /∈ L or lokt
s

∼
∈ q from whih via (G.t) follows lokingt(L, s, T )

∼
∈ qwhere also s /∈ L per Lemma 5.2.1 or there must be an akLt

s message whih is not possibleas per (I.s). Thus (M.)'.(M.d)' as the removal of u from L is unproblemati with the newly produed suessu
smessage.(P.b)' from (P.a) as the only problemati transition is u whih was in L earlier. (P.)' asthe unlokt

s message was onsumed but the �rst omponent of the state hanged to u forwhih (P.)' holds with the newly produed suessu
s message.Case lokeds(t, ∅)

{unlokt
s};∅−−−−−−→As

unlokeds:Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as no messages are produed. Thusalso (*.e)'.(C.s)' from the performed step. (C.t)' as no state of a transition was hanged.(D.s)' as no suessts message existed per (J.e) and no other suessu
s message existed per(D.s). (D.t)' as no state of transition was hanged.From (E.s) follows that no loosev

s message an exist. Thus (E.*)'. Similarly from (F.s)follows (F.*)'.(G.s)' from the performed step. (G.t)' as no state of a transition was hanged and noakLu
p was onsumed. 49



5 Distributed Systems and Linear TimeFrom (H.s) follows that no akUv
s message existed. Thus (H.*)'. Using (I.s) follows (I.*)'similarly.(J.s)' as the only possible unloku

s message has u = t. That message was onsumedhowever, and per (B) no seond one existed. (J.t)' as no state of a transition was hangedand no lokv
p was onsumed.(K.s)' as the only possible gou

s message has u = t. From (J.e) however, no suh messageexisted. (K.t)' as no state of a transition was hanged.From (L.s) follows that no newTokenu
s message existed. Thus (L.*)'.Terms only improved for (M.a)', (M.b)', (M.d)', (N.*)', (O.*)', (P.a)', (P.b)' and (Q.a)'.The only transition problemati for (M.)' is t, but from (J.t) either t is in a statelokingt(L, l, T ) with s /∈ L or lokt

s

∼
∈ q from whih via (G.t) follows lokingt(L, s, T )

∼
∈ qwhere also s /∈ L per Lemma 5.2.1 or there must be an akLt

s message whih is not possibleas per (I.s). Thus (M.)'.(P.)' as the only unloku
p message onsumed has p = s and u = t and the new state of sis unproblemati. (R.a)' from (P.b) as (J.e) exludes a got

s message.Case lokeds(t, L)
{got

s};{looseu
s | u∈s•,u 6=t}

−−−−−−−−−−−−−−−→As
waitings(t, L, s• \ {t}):Then α(q′) as follows: (A.b)' as f′ didn't hange sine got

s

∼
∈ q implies via (K.t) that�ringt(T )

∼
∈ q for some T . (B)' as (E.s) ensured that no loosev

s message existed before.To show (C.s)' assume that some notifyv
s message existed. Then from (C.s) follows that

v 6= t and v /∈ L. Thus v ∈ s• \ {t} and waitings(t, L, s• \ {t}) makes (C.s)' true for thatmessage. Thus (C.s)'. (C.t)' as no state of a transition was hanged. (C.e)' as no lokv
s ,no akUv

s , and no akLv
s messages have been produed.(D.s)' as every message suessvs must have v = t per (D.s) and suessts is exluded by(K.e). (D.t)' as no state of a transition was hanged. (D.e)' as no lokv

s and no unlokv
smessages have been produed.No loosev

s message ould have existed in q as per (E.s). For the newly reated messages(E.s)' follows from the performed step. (E.t)' follows from (P.a), (P.b) and (M.) togetherwith the observation that every gov
s

∼
∈ q must have v = t per (K.s).From (F.s) follows that no tokenv

s message an exist. Thus (F.*)'.Assume some lokv
s message existed in q. For v 6= t the state waitings(t, L, s• \ {t}) makes(G.s)' true for that message. For v = t an unlokt

s message would need to exist, whih isnot the ase as per (K.e). Thus (G.s)'. (G.t)' as no state of a transition was hanged andno akLv
p has been onsumed. (G.e)' as no akUv

p message was reated.From (H.s) follows that no akUv
s message existed. Thus (H.*)'. Similarly (I.*)' followsfrom (I.s).50



5.2 How It Does WorkFrom (J.s) follows that every message unlokv
s has v = t. But unlokt

s 6
∼
∈ q from (K.e).Thus (J.s)'. (J.t)' as no state of a transition was hanged and no lokv

p was onsumed.From (K.s) follows that every message gov
s has v = t. But got

s was onsumed and noseond one existed as per (B). Thus (K.*)'.From (L.s) follows that no newTokenu
s message existed. Thus (L.*)'.Terms only improved for (M.a)', (N.b)', (N.)', (N.d1)', (N.d2)', (N.d3)', (P.a)', (P.b)',(Q.a)', and (R.a)'.For (M.b)' assume some transition v with lokingv(L

′, l, T )
∼
∈ q and s ∈ T \ (L ∪ {l})exists. If v 6= t then v ∈ s• \ {t} and (M.b)' holds for v. If v = t then there would needto be an unlokt

s message whih is a ontradition to (K.e). Thus (M.b)'.(M.)' as the only problemati transition ould be t whih however is in state �ringt(T )for some T as per (K.t). (M.d)' with the newly produed looseu
s messages.(N.a)' as the only gov

p message onsumed has p = s and v = t and s swithed its stateinto waitings(t, L, s• \ {t}).(O.a)' from (K.t). (O.b)' as s• \ ((s• \ {t}) ∪ {t}) = ∅. (O.)' with the newly produedlooseu
s messages.(P.)' as the only gov

p message onsumed has p = s but the new state of s is unproblemati.Case waitings(t, L, W )
{loku

s };∅−−−−−→As
waitings(t, L ∪ {u}, W ), u 6∈ L, u ∈ W :Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as no messages are produed. Thusalso (*.e)'.(C.s)' as the only element added to L is u for whih no notifyu

s message exists as per(G.e). (C.t)' as no state of a transition was hanged.From (D.s) no suessv
s message existed. Thus (D.*)'.(E.s)' as only L was hanged. (E.t)' as no notifyu

p messages were onsumed and no stateof a transition was hanged.From (F.s) follows that no tokenv
s message an exist. Thus (F.*)'.(G.s)' as the only element added to L is u, one loku

s message was onsumed, no seondone exists as per (B), and no unlokv
p message was onsumed. (G.t)' as no state of atransition was hanged and no akLv

p was onsumed.(H.s)' as the only element added to L is u for whih no akUu
s message exists as per (G.e).(H.t)' as no state of a transition was hanged.(I.s)' as the fat that u was added to L makes up for the onsumed loku

s message. (I.t)'as no state of a transition was hanged.From (J.s) follows that no message unlokv
s exists. Thus (J.*)'. Similarly from (K.s)follows (K.*)'. From (L.s) follows (L.*)'. 51



5 Distributed Systems and Linear TimeTerms only improved for (M.a)', (M.)', (N.*)', (O.*)', (P.*)', (Q.a)', and (R.a)'.(M.b)' as the only element added to L is u for whih (G.t) and (I.t) guarantee thatlokingu(L
′, l, T )

∼
∈ q suh that s /∈ T \ (L′ ∪ {l}). Regarding (M.d)', from (O.) and

u ∈ W follows that a looseu
s , an akUu

s , or an akLu
s message exists. If looseu

s

∼
∈ q (M.d)',(G.e) exludes the akUu

s message, and if an akLu
s message exists, (I.t) guarantees that uis in an unproblemati state lokingu(L

′, l, T ) for (M.d)' as s /∈ T and thus via Lemma 5.2.1
l 6= s. Thus (M.d)'.Case waitings(t, L, W )

{akLu
s };∅−−−−−→As

waitings(t, L \ {u}, W \ {u}), u ∈ L:Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as no messages are produed. Thusalso (*.e)'.(C.s)' as the only element removed from W is u for whih (I.e) guarantees that no notifyu
smessage exists. (C.t)' as no state of a transition was hanged.From (D.s) no suessv

s message existed. Thus (D.*)'.(E.s)' as the only element removed from W is u for whih (I.e) guarantees that no looseu
smessage exists. (E.t)' as no notifyu

p messages were onsumed and no state of a transitionwas hanged.From (F.s) follows that no tokenv
s message an exist. Thus (F.*)'.(G.s)' as the only element removed from W is u whih was in L before and for whih per(G.s) no loku

s message exists. (G.t)' as no state of a transition was hanged, the onlyonsumed akLv
p message has p = s and v = u, and no loku

s message exists per (G.s).(H.s)' as the only element removed from W is u for whih (I.e) guarantees that no akUu
smessage exists. (H.t)' as no state of a transition was hanged.(I.s)' as for both W and L the only element removed is u for whih one akLu

s messagewas onsumed and no seond one exists as per (B). (I.t)' as no state of a transition washanged.From (J.s) follows that no message unlokv
s exists. Thus (J.*)'. Similarly from (K.s)follows (K.*)'. From (L.s) follows (L.*)'.Terms only improved for (M.a)', (M.)', (M.d)', (N.*)', (O.a)', (P.*)', (Q.a)', and (R.a)'.To show (M.b)', assume some transition v exists suh that lokingv(L

′, l, T )
∼
∈ q and

s ∈ T \ (L′ ∪ {l}). If v = u then from (I.t) follows that s /∈ T and (M.b)' holds. For
v 6= u nothing relevant hanged as only u was removed from W . Thus (M.b)'.(O.b)' as the only element new to s• \ (W ∪ {t}) is u for whih (I.t) guarantees thatlokingu(L

′, l, T )
∼
∈ q with s /∈ T . (O.)' as the only onsumed message was akLu

s and uwas removed from W .52



5.2 How It Does WorkCase waitings(t, L, W )
{akUu

s };∅−−−−−→As
waitings(t, L, W \ {u}), u 6∈ L, u ∈ W :Then α(q′) as follows: (A.b)', (B)', (*.e)', (C.*)', (D.*)', (E.*)', (F.*)', (H.t)', (I.t)', (J.*)',(K.*)', (L.*)', (M.*)', (N.*)', (O.*)', (P.*)', (Q.a)', and (R.a)' as in the previous ase using(H.*) instead of (I.*) and the di�erent message name, leaving (G.s)', (G.t)', (H.s)', and(I.s)' to be proven here.(G.s)' as the only element removed from W is u for whih (H.e) guarantees that no loku

smessage exists. (G.t)' as no state of a transition was hanged and no akLu
p was onsumedin the step.(H.s)' as the only element removed from W is u for whih one akUu

s message was on-sumed and no seond one exists per (B).(I.s)' as the only element removed from W is u for whih (H.e) guarantees that no akLu
smessage exists.Case waitings(t, ∅, ∅)

{internalPassTokent
s};{tokent

s}−−−−−−−−−−−−−−−−−→As
emptys:Then α(q′) as follows: (A.b)' as f′ didn't hange. (B)' as per (F.s) no tokent

s messageexisted before.From (C.s) follows that no notifyu
s messages existed. Thus (C.*)'. Similarly from (D.s)follows (D.*)'. From (E.s) follows (E.*)'.From (F.s) follows that no tokenu
s message existed before. For the new tokent

s message(F.s)' follows from the performed step. Thus (F.s)'. From (O.a) follows that �ringt(T )
∼
∈ qwith s /∈ T . Thus (F.t)'. From (L.s) follows that no newTokenu

s message exists. Thus(F.e)'.From (G.s) follows that no loku
s message existed before. Thus (G.*)'. Similarly from(H.s) follows (H.*)'. From (I.s) follows (I.*)'. From (J.s) follows (J.*)'. From (K.s)follows (K.*)'. From (L.s) follows (L.*)'.From (O.a) follows that t is in a state �ringt(T ) with s /∈ T . From (O.b) follows that all

u ∈ s• \ {t} are in a state lokingu(L
′, l, T ) with s /∈ T . Thus (M.a)' and (M.b)'.Terms only improved for (M.)', (M.d)', (N.b)', (N.)', (N.d1)', (N.d2)', (N.d3)', (O.*)',(P.*)', (Q.a)', and (R.a)'.(N.a)' with the newly produed tokent
s message. �After having shown that every step of the implementation implies an equivalent stepof the original net as well, the other diretion is now shown: Every step of the net isalso possible in the implementation. However this does not hold for all implementationstates, but only for �normalised� implementation states, those whih ould be an initialimplementation state as given in De�nition 5.2.1 or De�nition 5.2.2.
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5 Distributed Systems and Linear TimeDe�nition 5.2.6Let N be a plain net and let AN be the FSM based implementation of it.Let n = |TN | + |SN |.The funtion F : P(SN) → QAN is de�ned suh that
∀1 ≤ i ≤ n. ((πi(F(M)) = lokingt(∅,⊥, ∅) ∧ t ∈ TN) ∨

(πi(F(M)) = emptys ∧ s ∈ SN \ M) ∨

(πi(F(M)) = prenotifys ∧ s ∈ M))

∧ πn+1(F(M)) = ∅ .The funtion F is well de�ned as the result must lie within QAN and is thus unique. Alsoapplying f after F results in the identity.Lemma 5.2.2
f(F(M)) = M .ProofLet M ⊆ P(SN).Take any s ∈ M . As F maps into QAN , there must, aording to De�nition 3.2.2, besome index i suh that πi(F(M)) ∈ QAs . As s /∈ TN and s ∈ M , that element must have

πi(F(M)) = prenotifys. Take any s 6∈ M . Again there exists some i with πi(F(M)) ∈ QAs .And from s /∈ M then follows that πi(F(M)) = emptys. Similarly for every t ∈ TN followsthat an i exists for whih πi(F(M)) = lokingt(∅,⊥, ∅). As F(M) has distint values atall these indies, the indies must be distint, as n = |SN | + |TN | the �rst n indies of
F(M) are uniquely determined. Also πn+1(F(M)) = ∅.Thus for all s ∈ M follows that prenotifys

∼
∈ F(M) and as no messages exists s ∈ f(F(M)).For all s /∈ M follows that emptys

∼
∈ F(M) and as no transition is in �ringt(T ) for any T ,also s /∈ f(F(M)). �Proposition 5.2.2Let N be a plain net and let AN be the FSM based implementation of it.(i) F(MN

0 ) = qAN
0 and(ii) If M [G〉N M ′, then there exists a sequene q0, q1, . . . , qn of states, a sequene

I1, I2, . . . , In, and a sequene O1, O2, . . . , On suh that q0
I1;O1−−−→AN

q1
I2;O2−−−→AN

· · ·
In;On−−−→AN

qn, F(M) = q0, F(M ′) = qn, and there exists a j, 1 ≤ j ≤ n suhthat i 6= j ⇒ Oi = ∅ and Oj = {�ret | t ∈ G}.ProofThe allegedly existing sequene an be desribed uniquely by giving the performed inputand internal ations. To make the exeution sequene unique, assume an arbitrary total54



5.2 How It Does Workorder ≤ on transitions. The following uses the notation numi(X) to denote the i-thelement of a totally ordered set, in partiular to selet the i-th smallest transition aordingto the just de�ned ≤ and to selet the i-th smallest plae aording to the global orderof plaes used in the onstrution of the FSM based implementation.There exist x1, x2, x3, x4, and x5 suh that the following sequene ful�ls all onditions.
I1 = {internalNotifys | s ∈ •G}

I2 =
{notifyt

p

∣

∣

∣ t ∈ (•G)•, p = num1(
•t ∩ •G)

}

I3 =
{notifyt

p

∣

∣

∣ t ∈ (•G)•, p = num2(
•t ∩ •G)

}

· · · · · ·

Ia−1 =
{notifyt

p

∣

∣

∣ t ∈ (•G)•, p = numx1
(•t ∩ •G)

}

Ia =
{internalLokt

s

∣

∣

∣ t ∈ G, s = num1(
•t)

}

Ia+1 =
{lokt

s

∣

∣

∣ t ∈ G, s = num1(
•t)

}

Ia+2 =
{suesst

s

∣

∣

∣ t ∈ G, s = num1(
•t)

}

Ia+3 =
{internalLokt

s

∣

∣

∣ t ∈ G, s = num2(
•t)

}

Ia+4 =
{lokt

s

∣

∣

∣ t ∈ G, s = num2(
•t)

}

Ia+5 =
{suesst

s

∣

∣

∣ t ∈ G, s = num2(
•t)

}

· · · · · ·

Ib−3 =
{internalLokt

s

∣

∣

∣ t ∈ G, s = numx2
(•t)

}

Ib−2 =
{lokt

s

∣

∣

∣ t ∈ G, s = numx2
(•t)

}

Ib−1 =
{suesst

s

∣

∣

∣ t ∈ G, s = numx2
(•t)

}

Ib =
{internalFiret

∣

∣

∣ t ∈ G
}

Ib+1 =
{got

s

∣

∣

∣ t ∈ G, s ∈ •t
}

Ib+2 =
{looset

p

∣

∣

∣ t ∈ (•G)• \ G, p = num1(
•t ∩ •G)

}

Ib+3 =
{looset

p

∣

∣

∣ t ∈ (•G)• \ G, p = num2(
•t ∩ •G)

}

· · · · · ·

Ic−1 =
{looset

p

∣

∣

∣ t ∈ (•G)• \ G, p = numx3
(•t ∩ •G)

}

Ic =
{akUt

p

∣

∣

∣ p ∈ •G, t ∈ num1(p
• \ G)

}

Ic+1 =
{akUt

p

∣

∣

∣ p ∈ •G, t ∈ num2(p
• \ G)

}

· · · · · ·

Id−1 =
{akUt

p

∣

∣

∣ p ∈ •G, t ∈ numx4
(p• \ G)

}
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5 Distributed Systems and Linear Time
Id =

{internalPassTokent
s

∣

∣

∣ t ∈ G, s ∈ •t
}

Id+1 =
{tokent

s

∣

∣

∣ t ∈ G, s = num1(
•t)

}

Id+2 =
{tokent

s

∣

∣

∣ t ∈ G, s = num2(
•t)

}

· · · · · ·

Ie−1 =
{tokent

s

∣

∣

∣ t ∈ G, s = numx5
(•t)

}

Ie =
{internalDonet

∣

∣

∣ t ∈ G
}

Ie+1 =
{newTokent

s

∣

∣

∣ s ∈ G•
}

Finally, j = b. �There are two additional properties of the implementation that will be neessary to proveorretness in Theorem 5.2.1. The �rst property is onerned with deadloks, i.e. stateswhere no further ativity is possible, whih the implementation should not introdue. Theimplementation must only deadlok in states whih are related to states where a deadlokwas present in the original net. The seond property does a similar thing for liveloks, i.e.in�nite sequenes of unobservable ativity. As the original net will be a plain net though,the original net annot ontain any liveloks, and hene the implementation should notinlude any either.The implementation does not have a deadlok, if the original ould have proeeded.Proposition 5.2.3Let N be a plain net and let AN be the FSM based implementation of N . Let q ∈ QANwith α(q).If there exists an A suh that f(q)
A
−→N then there also exist I, O and q′ suh that

q
I;O
−→AN

q′. (Note that O does not need to have anything in ommon with A).ProofAssume no suh O exists. Note �rst that also O = ∅ is perfetly aeptable, so no internalativity may our either.notifyt
s

∼
∈ q would lead to some ativity via (C.t). suesst

s

∼
∈ q would lead to ativity via(D.t). looset

s via (E.t) or (C.t). tokent
s via (F.t). lokt

s via (G.s) or (J.s). akUt
s via (H.s).akLt

s via (I.s), (G.s) or (J.s). unlokt
s via (J.s). got

s via (K.s). newTokent
s via (L.s). Thusno message exists in q.Also, there is no transition t is in a state of �ringt(T ) for any T . If T = •t there isativity. Thus from (N.a) and the absene of messages there exists an s ∈ •t \ T withwaitings(t, L, W )

∼
∈ q. If W = ∅ there is ativity. Thus from (O.) some messages existand there is a ontradition. Thus no transition t in a state �ringt(T ) an exist in q.56



5.2 How It Does WorkFrom f(q)
A
−→N follows that there exists some G with f(q) [G〉N . Now take t ∈ G. Clearly

•t ⊆ f(q). From De�nition 5.2.4 then for every s ∈ •t either prenotifys

∼
∈ q, unlokeds

∼
∈ q,lokeds(u, L)

∼
∈ q for some u and L, or �ringu(T )

∼
∈ q for some u and T . If prenotifys

∼
∈ qthere is ativity and �ringu(T )

∼
∈ q is impossible as well. If unlokeds

∼
∈ q then from (R.a)and the absene of messages follows that ∀u ∈ s•∃L′, l, T. lokingu(L
′, l, T )

∼
∈ q ∧ s ∈ T .If lokeds(u, L)

∼
∈ q then from (P.a), (P.b), and the absene of messages follows that

∀u ∈ s•∃L′, l, T. lokingu(L
′, l, T )

∼
∈ q ∧ s ∈ T . Repeating these arguments for eah s ∈ •tit follows that lokingt(L

′, l, •t)
∼
∈ q. If l = ⊥ there is ativity, thus l 6= ⊥.Then from (M.d) and the absene of messages follows that lokedl(u, L′)

∼
∈ q with t ∈ L′and u 6= t. From (P.) and the absene of messages then lokingu(L

′′, l′, T ′)
∼
∈ q with

l ∈ L′′. Assume l′ = ⊥ then together with L′′ 6= ∅ follows from Lemma 5.2.1 that T ′ = •uand there is ativity. Thus l′ 6= ⊥ and from Lemma 5.2.1 l < l′.Now onsider a plae p ∈ •u. Per (M.a) follows that either unlokedp

∼
∈ q, lokedp(. . .)

∼
∈ q,or waitingp(. . .)

∼
∈ q. With (O.a) however, the latter possibility is a ontradition withthe fat that no �ringv(. . .)

∼
∈ q.From here on, the above arguments an be repeated, yielding a new l′ eah turn, andalways stritly larger than the previous one. As N is �nite however, at some point allplaes are exhausted. Thus there is a ontradition with the assumption that no ativityis possible. �The implementation does not have a livelok.Proposition 5.2.4Let N be a plain net and let AN be the FSM based implementation of N . Let q ∈ QANwith α(q).There exists no in�nite sequene I1, I2, . . . suh that q

I1;∅−−→AN

I2;∅−−→AN
· · · .ProofAssume an in�nite sequene I1, I2, . . . suh that q

I1;∅−−→AN

I2;∅−−→AN
· · · exists.As no visible output is allowed while the sequene is exeuting, no �ret messages may beprodued. The same step produing the �ret messages however is the only step in whihgot

s messages are produed. Thus no step of the sequene may produe new got
s messages.As N is �nite and α(q) (B) holds, it follows that only �nitely many got

s messages exist in
q. As the sequene is assumed to be in�nite however, there must be an Ii after whih nofurther got

s messages are onsumed.The only step produing looseu
s messages however onsumes got

s messages. Again only�nitely many looset
s messages exist, thus there must be some Ij after whih no furtherlooset

s messages are onsumed. As all possibilities to produe an akUt
s or an akLt

s message57



5 Distributed Systems and Linear Timerequire that a looset
s message is onsumed, there is a point after whih no further of thesemessages is produed and some Ik after whih no akLt

s and no akUt
s is onsumed.Also the only step where a plae enters its waitings(t, L, W ) phase onsumes a got

s message.Thus there must be some Il after whih no plae enters its waitings(t, L, W ) phase. Only�nitely many plaes exist, and whenever a plae enters its emptys phase, it exited froma waitings(t, L, W ) phase. Thus there must be some Im after whih no plae enters itsemptys phase. As every plae ame from an emptys state when it enters its prenotifysphase, there must be a some In after whih no plae enters its prenotifys phase. Thusthere must be some Io after whih no plae leaves its prenotifys phase. As the reation ofa notifyt
s message requires that s leaves its prenotifys phase there must be some Ip afterwhih no further notifyt

s messages are produed and some Iq after whih no further notifyt
smessages are onsumed.After Im as no plae enters its emptys phase, no further tokent

s messages are produed.Thus there is a Ir after whih no further tokent
s messages are onsumed. After that pointno transition an enter its �ringt(

•t) state, as every transition must have at least onepreplae (otherwise N would not be ontat free), and the �ringt(T ) phase starts with
T = ∅. If no transition enters its �ringt(

•t) anymore there must be some Is when the lasttransition leaves its �ringt(
•t) state and the last newTokent

s message is produed. Thusthere is some point It after whih no further newTokent
s message is onsumed.After Ij and Iq no looset

s and no notifyt
s messages are onsumed, thus a transition in a statelokingt(L, l, T ) an not hange the T omponent any more. In partiular no transitionan enter a state lokingt(L, l, T ) with l 6= ⊥ and T 6= •t. Thus there is some Iu afterwhih no transition leaves a lokingt(L, l, T ) state with l 6= ⊥ and T 6= •t. As leaving thesestates and onsuming looset

s messages are the only two possibilities of produing unlokt
pmessages, there is some point after whih no further unlokt

p messages are produed andsome Iv after whih none are onsumed any more.As onsuming unlokt
s messages and leaving the prenotifys state are the only possibilitiesfor a plae to enter its unlokeds state and both are impossible after Iv and Ip, there mustbe a point after whih no plae enters its unlokeds state any more. Thus there must alsobe some Iw after whih no plae leaves its unlokeds state.Consuming unlokt

s messages and leaving the unlokeds state of a plae are the onlypossibilities for a suessts message to be produed. Both are impossible after Iv and Iw.Thus there must also be some Ix when no further suessts message is onsumed.As the only ways for a transition to enter a state of the form lokingt(L,⊥, •t) are on-suming a notifyt
s message or onsuming a suesst

s message, this does not happen after Ixand Iq. Thus there must be some point Iy after whih no transition leaves a state of theform lokingt(L,⊥, •t). As lokt
s messages are only produed when leaving suh a state,no lokt

s messages are produed after Iy and there is some Iz after whih no lokt
s messageis onsumed.Thus no notifyt

s is onsumed after Iq, no suessts is onsumed after Ix, no looset
s is58



5.2 How It Does Workonsumed after Ij, no tokent
s is onsumed after Ir, no lokt

s is onsumed after Iz, no akUt
sis onsumed after Ik, no akLt

s is onsumed after Ik, no unlokt
s is onsumed after Iv, nogot

s is onsumed after Ii, no newTokent
s is onsumed after It. Thus there is a point afterwhih no messages whatsoever are onsumed.Furthermore no internalLokt an be performed after Iy, no internalDonet an be per-formed after Is, no internalNotifys an be performed after Io, no internalPassTokens anbe performed after Im. Thus there is some point after whih no step is possible anymore.Therefore no in�nite sequene I1, I2, . . . suh that q

I1;∅−−→AN

I2;∅
−−→AN

· · · exists. �Given the automaton based desription of how to enode arbitrary nets into a distributedform, the following onstrution transforms those automatons bak into nets, thereby�nishing the distributed implementation transformation. The transformation bak tonets proeeds in two separate steps, �rst the sequential FSMs representing the plaes andtransitions of the original net are transformed into nets, then the parallel ompositionoperator between state mahines is replaed by a parallel omposition operator betweennets.In the following onstrution, the power of multi-labelled transitions will be useful � fora short while � beause there is no need to split up the parallel output of the automatonin an unnatural way. Later, all the net implementations of the generated FSMs will beombined again, and only singleton labelled transitions will remain. At that point, theresulting net is a plain τ -net.De�nition 5.2.7Let A be a serial FSM.The net based implementation of A is the net NA = (SNA, TNA, F NA, MNA
0 , ℓNA) with� SNA =

{stateA,q

∣

∣

∣ q ∈ QA
}

∪
{inputi ∣

∣

∣ i ∈ ΣA
I

},� TNA =
{doq,i,O,q′

∣

∣

∣ q
{i};O
−−→A q′

},� F NA =

{

(stateA,q, doq,i,O,q′), (inputi, doq,i,O,q′),
(doq,i,O,q′, stateA,q′)

∣

∣

∣

∣

∣

q
{i};O
−−→A q′, i ∈ ΣA

I

}

∪
{

(stateA,q, doq,i,O,q′), (doq,i,O,q′, stateA,q′)
∣

∣

∣ q
{i};O
−−→A q′, i ∈ ΣA

τ

}

,� MNA
0 = {state

A,qA
0

}, and� ℓNA(doq,i,O,q′) = O.The set of input plaes of suh a net is de�ned as I(N) =
{inputi ∣

∣

∣ i ∈ ΣA
I

}.Also, the omposition operator between state mahines needs to be transformed into anoperator between nets.De�nition 5.2.8Let N and N ′ be two nets with learly de�ned input plaes, i.e. nets produed byDe�nition 5.2.7 or by appliation of this de�nition. 59



5 Distributed Systems and Linear TimeLet I = I(N) ∪ I(N ′).The asynhronous parallel omposition of the two nets, N‖N ′, is de�ned as the net
N‖N ′ = (SN‖N ′

, TN‖N ′
, F N‖N ′

, M
N‖N ′

0 , ℓN‖N ′
) with� SN‖N ′

= SN ∪ SN ′,� TN‖N ′
= TN ∪ TN ′,� F N‖N ′
= F N ∪ F N ′

∪
{

(t, inputo) ∣

∣

∣ t ∈ TN ∪ TN ′
, inputo ∈ I, o ∈ ℓN‖N ′

(t)
},� M

N‖N ′

0 = MN
0 ∪ MN ′

0 , and� ℓN‖N ′
(t) =







ℓN(t) \ {i | inputi ∈ I} if t ∈ TN

ℓN ′
(t) \ {i | inputi ∈ I} if t ∈ TN ′ .The set of input plaes of the omposition is de�ned as

I(N‖N ′) = I \
{inputi ∣

∣

∣ ∃t ∈ TN . i ∈ ℓN(t) ∨ ∃t ∈ TN ′

. i ∈ ℓN ′

(t)
}Using the above de�nition, the net based implementation of an asynhronous parallelomposition of serial FSMs is de�ned as the asynhronous parallel omposition of the netbased implementations of the omposed FSMs.The net based implementation of a parallel omposition of FSMs an be understood as anetwork of sequential mahines in the sense of De�nition 3.1.4 by adding the inputi plaesas bu�er plaes also to the omponent whih outputs to them.The behavioural relation between the state mahine omposition and the net based im-plementation thereof is very lose, as a bijetive funtion between automaton states andreahable net states exists.De�nition 5.2.9Let A1, A2, . . . , An be serial FSMs with pairwise mathing ation signatures, suh thattheir asynhronous parallel omposition A‖ is 1-safe.Let N1, N2, . . . , Nn be the respetive net based implementations. Let N‖ be the asyn-hronous parallel omposition of the nets.The funtion G : QA‖ → P(SN‖) is de�ned as

G(q) =
{stateAi,πi(q)

∣

∣

∣ 1 ≤ i ≤ n
}

∪ {inputo | o ∈ πn+1(q)}For markings M where in eah net N1, N2, . . . , Nn exatly one plae of the formstateAi,qi
is marked, the funtion g : P(SN‖) → QA‖ is de�ned suh that

(∀1 ≤ i ≤ n∃q. πi(g(M)) = q ∧ stateAi,q
∈ M)

∧ πn+1(g(M)) = {o | inputo ∈ M}60



5.2 How It Does WorkLemma 5.2.3Let A1, A2, . . . , An be serial FSMs with pairwise mathing ation signatures suh thattheir asynhronous parallel omposition A‖ is 1-safe and suh that Σ
A‖

I = ∅.Let N1, N2, . . . , Nn be the respetive net based implementations. Let N‖ be the asyn-hronous parallel omposition of the nets.Let M, M ′ be reahable markings of N‖. Let q, q′ be reahable states of A‖.(i) g(G(q)) = q(ii) G(g(M)) = M(iii) G(q
A‖

0 ) = M
N‖

0(iv) g(M
N‖

0 ) = q
A‖

0(v) q
I;O
−→A‖

q′ ⇒ G(q)
O
−→N‖

G(q′) ∨ (O = ∅ ∧ G(q)
τ

−→N‖
G(q′))(vi) M

O
−→N‖

M ′ ⇒ ∃I. g(M)
I;O
−→A‖

g(M ′)(vii) M
τ

−→N‖
M ′ ⇒ ∃I. g(M)

I;∅
−→A‖

g(M ′)Proof(i): For eah net Ni, stateAi,πi(q)
∈ G(q) and ∀x. stateAi,x

∈ G(q) ⇒ x = πi(q). Hene gis de�ned for G(q).Also for 1 ≤ i ≤ n, πi(g(G(q))) = πi(q). Finally πn+1(g(G(q))) = πn+1(q).(ii): M is a reahable marking of N‖. From De�nition 5.2.7 follows that exatly oneplae of the from stateAi,qi
is marked for every 1 ≤ i ≤ n. Hene g(M) is de�ned. Inpartiular for every 1 ≤ i ≤ n, πi(g(M)) = qi and hene stateAi,qi

∈ G(g(M)). Finallyinputo ∈ M ⇔ inputo ∈ G(g(M)).(iii): Diretly from De�nition 5.2.7, De�nition 5.2.8, and De�nition 5.2.9.(iv): From (iii) and (i).(v): Consider �rst a singleton I = {a}.Assume q
{a};O
−−−→A‖

q′. There is a unique automaton Ai with a ∈ ΣAi

I ∪ ΣAi
τ where theation is either input or inner ation.If a ∈ ΣAi

I then with Σ
A‖

I = ∅ De�nition 3.2.2 guarantees that a ∈ πn+1(q) and De�ni-tion 5.2.7 produed a transition doπi(q),a,Oa,πi(q′)
whih onsumes a token from inputi andone from stateAi,πi(q)

. Hene this transition is enabled in the marking G(q) as all theseplaes are marked.The transition produes a new token on stateAi,πi(q′)
and, using De�nition 5.2.8, one tokenon eah plae in {inputo ∣

∣

∣ o ∈ Oa ∩ Σ
A‖
τ

}. Only one plae of the form stateAi,x
is markedin G(q). Thus the postplae of this form is either a preplae or empty. All postplaes ofthe form inputo must be empty as well, as otherwise the step would violate the assumptionthat A‖ is 1-safe. 61



5 Distributed Systems and Linear TimeFurthermore, the label of doπi(q),a,Oa,πi(q′)
whih remains after all nets have been omposedis Oa ∩ Σ

A‖

O , whih, using De�nition 3.2.2, equals O.If a ∈ ΣAi
τ then De�nition 5.2.7 produed a transition doπi(q),a,Oa,πi(q′)

whih has the singlepreplae stateAi,πi(q)
. Hene this transition is enabled in the marking G(q).The rest of the argument proeeds as above.Now onsider a non-singleton I. As the omponents have mathing ation signatures,no two omponents share input or output ations. Thus pre- and postplaes of all �redtransitions are distint and they an all �re in parallel.(vi) and (vii):As already noted above, in a reahable marking exatly one plae of the form stateAi,xwill be marked in eah net Ni. In partiular this holds for M and M ′, thus g is de�nedfor both.Instead of onsidering a whole step of N‖ onsider �rst a single transition �ring.Assume that M [{t}〉N‖

M ′. Let i be the index of the net where t originated.If t has some preplae of the form inputa, then per De�nition 5.2.7, qi
{a};Oi−−−→Ai

q′i for some
Oi (possibly empty). Also t will have one other preplae, namely stateAi,qi

. Furthermore
t will have the postplae stateAi,q

′
i
and from De�nition 5.2.8 also one postplae inputo foreah o ∈ Oi ∩ Σ

A‖
τ . Note that Oi = ℓNi(t) and using De�nition 5.2.8 ℓN‖(t) = Oi ∩ Σ

A‖

O ,whih is the O visible in the net step or the empty set in ase of a τ -step.As all preplaes of t are marked in M , all postplaes are marked in M ′, and Σ
A‖

I = ∅De�nition 5.2.9 enfores that πi(g(M)) = qi, a ∈ πn+1(g(M)), πi(g(M ′)) = q′i, and
πn+1(g(M ′)) = πn+1(g(M))−{a}+Oi∩Σ

A‖
τ . Also a ∈ ΣAi

I and ℓN‖(t) = O and hene withall other omponents non-moving, the omposition an perform g(M)
{a};O
−−−→A‖

g(M ′).If t has no preplae of the form inputa, then per De�nition 5.2.7, qi
{a};Oi−−−→Ai

q′i with
a ∈ ΣAi

τ and a ∈ Σ
A‖
τ . The transition t will have exatly one preplae, namely stateAi,qi

.All onsiderations about postplaes and output are as above.As all preplaes of t are marked in M and unmarked in M ′, De�nition 5.2.9 enforesthat πi(g(M)) = qi, πi(g(M ′)) = q′i. Hene with all other omponents non-moving, theomposed automaton an perform g(M)
{a};O
−−−→A‖

g(M ′).If a set of transition G is �ring, no two transitions share a ommon pre- or postplae asthey are independent. Thus the respetive state mahine omponents onsume di�erentinput messages and an proeed in parallel. �One other fat is still missing, namely that the given implementations are indeed dis-tributed. Every net based implementation as de�ned in this thesis is distributed.62



5.2 How It Does WorkLemma 5.2.4Let N be a net whih has been produed by De�nition 5.2.7 or by appliation ofDe�nition 5.2.8.
N is distributed.ProofFirst ase: N has been produed by De�nition 5.2.7 from an automaton A.Every transition always onsumes one token from a plae of the form stateA,q and produesa token on one suh plae. Initially there is exatly one plae of that form marked. Thus

M ∈ [MN
0 〉 ⇒ |M ∩

{stateA,q

∣

∣

∣ q ∈ QA
}

| = 1. As every transition onsumes one tokenfrom suh a plae, no two transitions an ever �re in parallel. Hene the trivial distributionloating all elements on the same loation makes the net distributed.Seond ase: N has been produed by De�nition 5.2.8 and is atually of the form N ′‖N ′′.By indution over the appliation depth of De�nition 5.2.8, it an be assumed that both
N ′ and N ′′ are distributed by distributions D ′ and D ′′ respetively.Without loss of generality it an be assumed that D ′ and D ′′ map to disjunt sets ofloations. A valid distribution for N ′‖N ′′ is then D ′ ∪ D ′′ where funtions have beenunderstood as relations. To show that this is indeed a orret distribution, all transitionsmust be o-loated with their preplaes and every pair of onurrently �ring transitionsmust not be o-loated.Assume a transition t and its preplae p are not o-loated. As the only entries in the�ow-relation of N ′‖N ′′ whih were not present in N ′ or N ′′ go from transitions to plaesthe preplae relation between t and p must have been present in N ′ or N ′′, whih violatesthe assumption that the respetive net is distributed.Assume two transitions t and u �re in parallel. If they both belong to the same net, N ′ or
N ′′, then that net is not distributed, violating the assumptions. If they belong to di�erentnets they are not o-loated as D ′ and D ′′ map to disjunt sets of loations. �Putting it all together, the main theorem an �nally been proven.Theorem 5.2.1Let N be a plain net. Let N ′ be the net based implementation of the FSM basedasynhronous implementation of N . Let N ′′ be the net N ′ where every label of theform {�ret} has been replaed by the label {t}.Then N ′′ is distributed and ompleted step trae equivalent equivalent to N .Proof
N ′ is distributed as per Lemma 5.2.4. As this property is independent of labelling, so is
N ′′. 63



5 Distributed Systems and Linear TimeLet A‖ be the FSM based asynhronous implementation of N .�CST(N ′′) ⊆ CST(N)�: Assume a1a2a3 . . . an ∈ CST(N ′′) and an 6= 0 and an 6= δ.Then per de�nition MN ′′

0
a1a2a3...an======⇒N ′′ M for some M .Undoing the renaming and applying Lemma 5.2.3 one obtains that A‖ an perform asequene of ations where the only visible outputs are of the form {�ret | t ∈ ai} in orretorder and arrives at g(M).From Proposition 5.2.1 then follows that MN

0
a1−→N

a2−→N
a3−→N · · ·

an−→N f(g(M)) and thus
a1a2a3 . . . an ∈ CST(N).Now assume that a1a2a3 . . . an0 ∈ CST(N ′′). Then per de�nition MN ′′

0
a1a2a3...an======⇒N ′′ Mfor some M suh that M X

τ
−→N ′′ and M X

A
−→N ′′ for all A.Using the reasoning above, MN

0
a1−→N

a2−→N · · ·
an−→N f(g(M)).Assume that f(g(M))

A
−→N . Then from Proposition 5.2.3 follows that g(M)

I;O
−→A‖for some I and O. If O = ∅ then Lemma 5.2.3 leads to M

τ
−→N ′′ , and if O 6= ∅then Lemma 5.2.3 leads to M

A
−→N ′′ both of whih violate the assumptions. Hene

f(g(M)) X
A
−→N and as N is a plain net also f(g(M)) X

τ
−→N and a1a2a3 . . . an0 ∈ CST(N).Now assume that a1a2a3 . . . anδ ∈ CST(N ′′). Then from Lemma 5.2.3 follows that A‖ anreah a state where an in�nite sequene of moves without output is possible, ontraditingProposition 5.2.4. Thus no suh trae an exist in CST(N ′′).�CST(N) ⊆ CST(N ′′)�: Assume a1a2a3 . . . an ∈ CST(N) and an 6= 0 and an 6= δ.Then per de�nition MN

0
a1a2a3...an======⇒N M for some M .Then via Proposition 5.2.2 A‖ an perform a sequene of state transitions where the onlyvisible outputs are of the form {�ret | t ∈ ai} in orret order and arrives in the state

F(M).From Lemma 5.2.3 follows that N ′ an performMN ′

0
{�ret | t∈a1}···{�ret | t∈an}==================⇒N ′ G(F(M)).Via the renaming then MN ′′

0
a1···an===⇒N ′′ G(F(M)) and a1a2a3 . . . an ∈ CST(N ′′).Now assume that a1a2a3 . . . an0 ∈ CST(N). Then per de�nition MN

0
a1a2a3...an======⇒N M forsome M suh that M X

τ
−→N and M X

A
−→N for all A.As above, A‖ an reah F(M) while produing the orret outputs. From Proposition 5.2.4follows that if A‖ ontinues from F(M) by performing steps without output, it will ul-timately reah a state q where it annot perform any more silent moves. From Propo-sition 5.2.1 follows that f(q) = f(F(M)). Furthermore from Lemma 5.2.2 follows that

f(F(M)) = M .From Lemma 5.2.3 follows that N ′ an perform MN ′

0
{�ret | t∈a1}···{�ret | t∈an}==================⇒N ′ G(q).Via the renaming then MN ′′

0
a1···an===⇒N ′′ G(q). And from the same Lemma 5.2.3 followsthat N ′ and N ′′ annot perform any silent moves from G(q).64



5.2 How It Does WorkNow assume G(q)
A
−→N ′′ for some A 6= ∅. Then N ′ an proeed with {�ret | t ∈ A}and from Lemma 5.2.3 follows that A‖ ould proeed via q

I;{�ret | t∈A}−−−−−−−−→A‖
for some I.But then Proposition 5.2.1 shows that N ould have proeeded via f(q)

A
−→N and using

f(q) = M there is a ontradition to the assumption that it annot. Thus G(q) X
A
−→N ′′.Hene a1a2a3 . . . an0 ∈ CST(N ′′).Finally no trae ending in δ an exist in CST(N), as N is plain. �
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6 Conlusion6.1 DisussionThis thesis has shown that all �nite plain 1-safe Petri nets an be implemented in adistributed fashion while preserving behaviour up to step trae equivalene. This setiondisusses some possible interpretations of this result.First note that of the three restritions imposed upon the original net, only one is signif-iant. 1-safety an be ensured by introduing o-plaes in a �rst step. Plainness an beintrodued by relabelling all transitions. Undoing that relabelling after the implementa-tion has been generated should produe a net equivalent to the non-plain original.The restrition to �nite nets however is a serious limitation, whih an not be solvedtrivially due to various possibilities for livelok. The simplest ase is just an in�nite set oftransitions of whih eah has a single preplae whih is marked initially. Then the protoolgiven in Setion 5 makes in�nitely many internalNotifys ations possible in sequene. Thislivelok is arti�ial however, as it only ours due to voluntary interleaving of all theseations. But even if ompleted step trae equivalene ould somehow be mended notto detet these kind of �parallel� liveloks, more serious ases exist, due the followingproblem.The implementation is orret beause step trae equivalene does allow the system toperform steps in sequene whih were parallel in the original. This fat ould be seen asa violation of the usual intuition. Usually, when inluding the interleavings of parallelations into the permissible traes of a system, one assumes that suh interleavings ourdue to imperfetion in timing. As the onept of �same point in time� is dubious indistributed systems anyway, this only seems natural. However, the implementation givenin this thesis uses these interleavings in a di�erent way. Ations whih were independentbefore an our in strit sequene in some runs of the implementation. This di�erenebeomes apparent if one onsiders the ausal struture of ations. Two ations whihwere parallel in the original system are never ausally dependent upon eah other. In theimplementation suh a dependeny an arise spontaneously however.Consider the net in Figure 4.5 and the step trae {v}{t}. In the original net, no tokenwas passed from t to v or vie versa, the two transitions �red ausally independent. In theimplementation however, the following senario an unfold. u sends a loku
p to p whihsubsequently grants the lok to u. Then v sends a lokv

q to q whih grants the lok to v.Then t attempts to lok p but reeives no immediate answer as p is loked to u. Then
u tries to lok q but also reeives no immediate answer as q is loked to v. Then v �res,66



6.1 Disussiononsuming the token on q, whih in turn produes a looseu
q message. This message thenauses u to release its lok on p, whih subsequently grants the lok to t whih �nally�res. This �ring of t is ausally dependent on the �ring of v. Tehnially this an beshown by traing the anestry of the tokens �nally onsumed by t and showing that someof them stem from the tokens produed by v.Some osmetis an be applied by splitting the �ring of transitions into an invisible partwhih handles the protool with the preplaes and only then performing the visible output,thus making the �ring of t again ausally independent of the �ring of v. However theseosmetis annot solve the underlying problem that t is ausally dependent upon thetoken initially plaed on q. While this may seem harmless in the example, and poses noproblem for �nite Petri nets, onsider an in�nite hain of transitions as if Figure 4.5 hadbeen repeated downwards. Then in�nitely long ausal hains an evolve, leading to a truesequential livelok while they unravel.In pratie however, in�nite systems do not our. Even long ausal hains an only ourif a long hain of transitions in diret on�it (two transitions are both enabled and sharea ommon preplae) existed in the original net. The garbling of the ausal struture ofthe original system should not matter in pratie either, as most environments will notare whether two ations have been performed in sequene due to imperfetions in timingor due to true ausality.Also, if Petri net model a real system, it is often possible to substitute profound al-gorithms where the net employed non-determinism. The most interesting plae for thistransformation in the onstrution given in this thesis is the prodution of a suessu

s mes-sage after a plae reeives an unlokt
s message. While all hoies for u are orret as perTheorem 5.2.1, some algorithms might lead to better performane in pratie. Possibleoptions inlude preferring the longest waiting transition (suggested by [5℄), the transitionwhih already holds the most loks, or the transition whih has the least remaining loksto aquire. The latter two options orrespond to a stati priority over all transitions,whereas the �rst option an be implemented by saving the set of waiting transitions in aqueue of some sort.On the theoretial side, this thesis has shown that arbitrary behaviours an be imple-mented distributedly under ompleted step trae equivalene and thus under all oarserequivalenes as well. It is an interesting question whih equivalene relations allowdistributed implementations and where in the linear-time branhing-time spetrum theboundary for distributed implementability lies. This thesis has removed a part of thegrey area on the oarse side, limiting the position of the boundary to be not oarserthan ompleted step trae equivalene and, with [7℄, not �ner than step readiness equiv-alene. Also, the present thesis hints that ausality an not be preserved in a distributedimplementation, while parallelism an.Additionally this thesis proposed a new model of asynhronous systems, whih is loselyrelated to a ertain lass of distributed Petri nets, but allows for a more ompat repre-sentation of many distributed algorithms. 67



6 ConlusionThis thesis has also shown, to me at the very least, that the proof method employed here(and also in [8℄ and [7℄) will be inadequate if the implementations of Petri nets inludeany more omplexity. My motivation to employ the Isabelle/HOL tool was mainly fuelledby the antiipation of the proof of Proposition 5.2.1. Unfortunately it was not possible toverify that proof using Isabelle/HOL within the given time frame. Indeed I found usingIsabelle/HOL is muh more time onsuming than I assumed initially due to two problems.First, the automated proof and term simpli�ation methods within Isabelle/HOL takeimpratial amounts of time if the terms get large, as it is the ase with the ombinationof all terms of the main invariant α. That problem will learly be solved within a fewyears, if not by better algorithms, then by faster hardware. Seond, due to the formalityof formal tools, one feels pressed to proof trivialities (usually turning out not be trivial atall if onsidered in a strit formal setting), whih distrats from the main line of proof.Instead of hoping for better tool support in the near future, it might be possible to de-sign protools like the one in this thesis using a synhronous spei�ation language, sayCCS, and then re�ne it towards asynhrony stepwise, while also re�ning the invariants. Idesigned the onstrution diretly in an asynhronous model however, so a synhronousversion did not seem natural. Also I feel that designing algorithms diretly in an asyn-hronous model will often lead to a higher grade of parallelism then a re�nement of asynhronous algorithm usually yields. Using results like the one in this thesis however, itmight at some point not be neessary any more to implement parallelism �by hand� atall. Instead well understood and performant protools might be available for all pratialproblems.6.2 Related WorkThe question whether, and if how, it is possible to implement synhronous system de-sriptions in a distributed and asynhronous fashion has been asked and answered in avariety of ways before this thesis already.In [13℄, Lynh has olleted quite a lot of impossibility results about distributed systems,many of whih onern asynhronous systems. In [7℄, van Glabbeek, Goltz and myselfhave answered the question negatively for the model of Petri nets, if branhing-time isassumed, as already disussed in Setion 4. In [12℄, Hopkins also identi�es some syn-hronous behaviours whih an not be implemented in a distributed fashion, again usingPetri nets but employing a di�erent notion of distributed.The works [1℄, [2℄, [18℄, [16℄, and [10℄ by de Boer, Gorla, Klop, Nestmann, and Palamidessiompared asynhronous variations of the proess algebras CCS and ACP and the π-alulus with eah other and also with the original versions of the aluli. They then at-tempted to implement seemingly less asynhronous variants in more asynhronous ones.Depending on the used equivalene relation and the exat nature of the modi�ationsapplied to the proess algebra, they reahed both impossibility results and working im-plementations. These proess algebra entri works have the advantage that their imple-68



6.2 Related Workmentations an use the expressive power proess algebras provide. On the other hand,the high level of abstration sometimes hides synhronous features in the depths of theoperator semantis, like the atomi hoie happening when multiple reeivers exist for asingle message.In [3℄, Fisher and Janssen identify systems whih behave equivalently, up to failuressemantis, whether they are implemented using synhronous or asynhronous ommuni-ation, with the goal of using synhronous spei�ations to build asynhronous systems.In [21℄, Rabin and Lehmann give a randomised algorithm whih solves the dining philoso-phers problem in an asynhronous and symmetri fashion. There are quite a lot of otherresults whih solve one or the other real-world problem in a distributed and asynhronousfashion, many of whih have been olleted by Lynh in [14℄. Indeed many methodsemployed in pratie to build asynhronous systems are often negleted in theoretialliterature whih inludes impossibility results, in partiular the possibility of using a ap-proximately orret loal lok and thus timeouts and the possibility of using probabilistihoies.Compared to models in the literature, asynhronously omposed state mahines as de�nedin this thesis are one of the most asynhronous models proposed. They are related mostlosely to the three following models.In [22℄ W. Reisig introdued networks of sequential mahines. While the di�ereneshave already been outlined in Setion 3, I omitted a detail there to keep the impliitassumption that tokens do not arry any meaningful information impliit. In partiular Idropped the free-hoie ondition on the grounds that otherwise a sequential omponentould not reat di�erently on di�erent input. When a Petri net models the ontrol �owof a ompliated system however, it is often the ase that tokens do not just arry theinformation of their presene but additional data. In partiular, where the Petri net onlyontains a non-deterministi and free hoie, the real system might employ an algorithmwhih deides di�erently depending on the onrete information arried in the token. Ifa network of sequential mahines as de�ned by Reisig behaves orretly, this orretnessis independent of those hidden data and algorithms. The present thesis however needsan expliit representation of the data and the algorithms relevant to the implementationprotool to show its orretness.Another model for asynhronous systems are the IO-Automata of Lynh and Tuttle [15℄.They are however not asynhronous aording to my intuition. While the sending of amessage an only be ontrolled by a single omponent and the sender an not be blokeddue to input enabledness of all reeivers, the model ignores the possibility of messageovertaking. The system skethed in Figure 6.1, if omposed using IO-Automata semantis,annot reah the error state, while it an do so if omposed using asynhronous statemahine omposition. A similar problem also exists in the model used for example byGouda, Chow and Lam in [11℄, whih they all �ommuniating �nite state mahines�, asthey ouple sequential mahines using FIFO-bu�ers, again making some forms of messageovertaking impossible. 69



6 Conlusion
{}; {a}

{}; {b}

{a}; {}

{b}; {}

{b}; {}

{a}; {}error
Figure 6.1: Two sequential omponents whih, depending on the omposition operator,sometimes reah the undesired state labelled �error�Considering all results about asynhronous systems, the overall piture is far from lear.Apart from ountless detailed ones the following large questions remain:� How do the various models of asynhronous systems relate? Does asynhrony arryover into, for example, Petri net semantis of asynhronous proess algebras.� Whih fundamental boundaries between the di�erent shades of asynhrony exist andwhere exatly are they?� Whih models of asynhronous systems are relevant in pratie?� Whih equivalene relations are best suited to desribe the behaviours an asyn-hronous system or a omponent thereof an exhibit?� How to transform the knowledge about asynhronous systems into pratial toolslike ompilers or hardware synthesisers?� How to build, verify and test large asynhronous systems?� Whih is the grand unifying theory answering all these questions?
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A AppendixThe following ontains formal proofs in the Isabelle/HOL system for some of the on-strutions and lemmas used in this thesis.theory Drah�owToolsimports Main MultisetbeginUsed for top-down proof development and as a �ller for left-out parts.axioms proofHole: Plemma eq-ong-fun-app: [[x = y ]] =⇒ f x = f y by simplemma diretContradition: [[¬ P =⇒ False]] =⇒ P by blastlemma ballE-in: [[∀ x∈A. Q x ; x ∈ A; Q x =⇒ P x ]] =⇒ P x by blastlemma ballE-in-double: [[∀ x∈A. ∀ y∈B . Q x y ; x ∈ A; y ∈ B ; Q x y =⇒ P x y ]] =⇒ P x yby blastlemma bexToEx : [[∃ x ∈ A. P x ]] =⇒ ∃ x . P x by blastlemma some-onnet : ∧P Q . [[∃ x . P x ; ∃ x . Q x ; (SOME x . P x ) = (SOME x . Q x )]] =⇒ ∃ x .P x ∧ Q xapply (rule-ta x = (SOME x . P x ) in exI )apply (rule onjI )apply (blast intro: someI-ex )apply (rule-ta s = (SOME x . Q x ) and t = (SOME x . P x ) in ssubst , assumption)apply (blast intro: someI-ex )donelemma noIntersetion-superset : [[A ∩ B = {}; C ⊆ A]] =⇒ C ∩ B = {} by blastlemma di�ImplSubset : A − B ⊆ A by blastlemma noIntersetion-subsetDi� : [[A ∩ B = {}; A ⊆ C ]] =⇒ A ⊆ C − B by blastlemma �niteMapUnion [elim]: [[�nite S ;
∧s. s ∈ S =⇒ �nite (f s)]] =⇒ �nite (

⋃ s ∈ S . f s)by simplemma list-�xlen-expl : 0 < length xs =⇒ xs = (hd xs) # (tl xs) by forelemma list-�xlen-expl1 : length xs = 1 =⇒ xs = [hd xs]apply (subgoal-ta length xs = Su 0 )prefer 2 apply arith 73



A Appendixapply (subgoal-ta ∃ a as. xs = a # as ∧ length as = 0 )prefer 2 apply (larsimp simp: length-Su-onv)by larsimplemma list-�xlen-expl2 : length xs = 2 =⇒ xs = [hd xs, hd (tl xs)]apply (subgoal-ta length xs = Su (Su 0 ))prefer 2 apply arithapply (subgoal-ta ∃ a b bs. xs = a # b # bs ∧ length bs = 0 )prefer 2 apply (larsimp simp: length-Su-onv)by larsimplemma semigroup-add .foldl-abelian-reverse:
[[semigroup-add add ; ∀ a b. add a b = add b a]] =⇒foldl add zero (xs) = foldl add zero (rev xs)apply (indut-ta xs, simp)apply (rename-ta x list)apply simpapply (erule-ta s = foldl add zero list in subst)by (rule semigroup-add .foldl-asso, assumption)lemma prediate-true-if-mem: x ∈ S =⇒ S x by (simp add : mem-def )lemma mem-if-prediate-true: S x =⇒ x ∈ S by (simp add : mem-def )lemma prediate-if-in-lambda: x ∈ (λx . P x ) =⇒ P x by (simp add : mem-def )lemma set-ops-to-prediate.simps: showsS x =⇒ (S ∪ T ) x andT x =⇒ (S ∪ T ) x and
[[S x ; T x ]] =⇒ (S ∩ T ) x andx = y =⇒ (insert y S ) x andS x =⇒ (insert y S ) xby (blast intro: prediate-true-if-mem mem-if-prediate-true)+de�nition powermultiset :: ′a set ⇒ ( ′a multiset)setwhere powermultiset S ≡ {M . set-of M ⊆ S}primre list-times :: ( ′a set)list ⇒ ( ′a list)set wherelist-times [] = {[]} |list-times (x # xs) = {l . hd l ∈ x ∧ tl l ∈ list-times xs ∧ length l = Su (length xs)}primre list-times-ompr :: ( ′a)list ⇒ ( ′a ⇒ ′b set) ⇒ ( ′b list)set wherelist-times-ompr [] f = {[]} |list-times-ompr (x # xs) f =
{l . hd l ∈ f x ∧ tl l ∈ list-times-ompr xs f ∧ length l = Su (length xs)}de�nition multiset-of :: ′a set ⇒ ′a multiset wheremultiset-of S ≡ Abs-multiset (λx . if x ∈ S then 1 else 0 )74



endtheory PetriNetimports Main Multiset Drah�owToolsbegintypes ( ′e, ′at)petrinet-repr =
( ′e set)×( ′e set)×( ′e × ′e)set×( ′e ⇒ ′at)×( ′e set)×( ′at set)de�nition wellformed-petrinet :: ( ′e, ′at)petrinet-repr ⇒ bool wherewellformed-petrinet N ≡let (S , T , F , l , M 0, τSet) = N in (

(∀ s x . (s, x ) ∈ F ∧ s ∈ S −→ x ∈ T ) ∧
(∀ t x . (t , x ) ∈ F ∧ t ∈ T −→ x ∈ S ) ∧
¬(∃ x . x ∈ S ∩ T ) ∧
(∀ s. s ∈ M 0 −→ s ∈ S )
)typedef ( ′e, ′at)petrinet =

{N :: ( ′e, ′at)petrinet-repr . wellformed-petrinet N }apply (rule exI [where x = ({s}, {}, {}, (λs. a), {}, {})])by (simp add : ColletI wellformed-petrinet-def Let-def )de�nition plaes :: ( ′e, ′at)petrinet ⇒ ′e setwhere plaes N ≡ fst (Rep-petrinet N )de�nition transitions :: ( ′e, ′at)petrinet ⇒ ′e setwhere transitions N ≡ fst (snd (Rep-petrinet N ))de�nition label :: ( ′e, ′at)petrinet ⇒ ( ′e ⇒ ′at)where label N ≡ fst (snd (snd (snd (Rep-petrinet N ))))de�nition �ow :: ( ′e, ′at)petrinet ⇒ ( ′e× ′e) setwhere �ow N ≡ fst (snd (snd (Rep-petrinet N )))de�nition initial :: ( ′e, ′at)petrinet ⇒ ( ′e set)where initial N ≡ fst (snd (snd (snd (snd (Rep-petrinet N )))))de�nition silent ::
( ′e, ′at)petrinet ⇒ ′at setwhere silent N ≡ snd (snd (snd (snd (snd (Rep-petrinet N )))))de�nition stati ::
( ′e, ′at)petrinet ⇒ ( ′e set)×( ′e set)×(( ′e× ′e)set)×( ′e ⇒ ′at)wherestati N ≡ let (S , T , F , l , M 0, τSet) = Rep-petrinet N in (S , T , F , l)de�nition Net ::
( ′e set)×( ′e set)×(( ′e× ′e)set)×( ′e ⇒ ′at)×( ′e set)×( ′at set) ⇒

( ′e, ′at)petrinetwhere [simp]: Net tuple = Abs-petrinet tuple
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A Appendixde�nition preset ::
( ′e, ′at)petrinet ⇒ ′e ⇒ ′e setwhere preset N x ≡ {y . (y , x ) ∈ �ow N }de�nition postset ::
( ′e, ′at) petrinet ⇒ ′e ⇒ ′e setwhere postset N x ≡ {y . (x , y) ∈ �ow N }de�nition presetSet ::
( ′e, ′at)petrinet ⇒ ′e set ⇒ ′e setwhere presetSet N X ≡ {y . ∃ x ∈ X . (y , x ) ∈ �ow N }de�nition postsetSet ::
( ′e, ′at)petrinet ⇒ ′e set ⇒ ′e setwhere postsetSet N X ≡ {y . ∃ x ∈ X . (x , y) ∈ �ow N }de�nition step ::
( ′e, ′at)petrinet ⇒ ′e set ⇒ ′e set ⇒ ′e set ⇒ boolwherestep N M 1 G M 2 ≡

(G ⊆ transitions N ) ∧ G 6= {} ∧
(∀ t ∈ G . preset N t ⊆ M 1 ∧ (M 1 − preset N t) ∩ postset N t = {}) ∧
(∀ t ∈ G . ∀ u ∈ G . t 6= u −→preset N t ∩ preset N u = {} ∧ postset N t ∩ postset N u = {}) ∧
(M 2 = (M 1 − presetSet N G) ∪ postsetSet N G)indutive-set reahable :: ( ′e, ′at)petrinet ⇒ ( ′e set)setfor N :: ( ′e, ′at)petrinet wherereahable-start : initial N ∈ reahable N

| reahable-step: [[M 1 ∈ reahable N ; ∃G . step N M 1 G M 2]] =⇒ M 2 ∈ reahable Nde�nition plain :: ( ′e, ′at)petrinet ⇒ bool whereplain N ≡ ∀ t ∈ transitions N . label N t /∈ silent N ∧
(∀ u ∈ transitions N . (label N t = label N u) −→ (t = u))de�nition τPlain :: ( ′e, ′at)petrinet ⇒ bool where

τPlain N ≡ ∀ t ∈ transitions N . ∀ u ∈ transitions N .label N t = label N u −→
(silent N (label N t)) ∨
(silent N (label N u)) ∨
(t = u)de�nition ontatFree :: ( ′e, ′at)petrinet ⇒ bool whereontatFree N ≡

∀M ∈ reahable N . ∀ t ∈ transitions N . preset N t ⊆ M −→
(M − preset N t) ∩ postset N t = {}de�nition ontatFreeStep ::

( ′e, ′at)petrinet ⇒ ′e set ⇒ ′e set ⇒ ′e set ⇒ bool76



whereontatFreeStep N M 1 G M 2 ≡
(G ⊆ transitions N ) ∧ G 6= {} ∧
(∀ t ∈ G . preset N t ⊆ M 1) ∧
(∀ t ∈ G . ∀ u ∈ G . t 6= u −→ preset N t ∩ preset N u = {}) ∧
(M 2 = (M 1 − presetSet N G) ∪ postsetSet N G)lemma stepImplContatFreeStep: [[step N M 1 G M 2]] =⇒ ontatFreeStep N M 1 G M 2by (simp add : ontatFreeStep-def step-def )lemma ontatFreeStep-lemma1 :

[[(M − PreT ) ∩ PostT = {}; PreT ⊆ M ; PreU ⊆ M ; PreT ∩ PreU = {}]] =⇒PostT ∩ PreU = {}by blastlemma ontatFreeStepValid :
[[ontatFree N ; M 1 ∈ reahable N ; ontatFreeStep N M 1 G M 2]] =⇒ step N M 1 G M 2apply (unfold ontatFree-def , unfold ontatFreeStep-def )apply (subgoal-ta ∀ t ∈ transitions N . preset N t ⊆ M 1 −→

(M 1 − preset N t) ∩ postset N t = {})prefer 2 apply blastapply (unfold step-def )apply (rule onjI , blast)apply (rule onjI , blast)apply (rule onjI , rule ballI )apply (rule onjI , blast)apply (erule onjE )+apply (subgoal-ta t ∈ transitions N , simp)apply (rule set-mp[where A = G ], assumption+)apply (rule onjI )prefer 2 apply simpapply (rule ballI )+apply (rule impI , rule onjI , simp)The interesting part of the proof follows.apply (erule onjE )+apply (subgoal-ta step N M 1 {t} (M 1 − preset N t ∪ postset N t))prefer 2apply (unfold step-def )[1 ]apply (rule onjI , blast)apply (rule onjI , blast)apply (rule onjI , simp)apply (erule ballE-in[where x = M 1], assumption)apply (subgoal-ta t ∈ transitions N , simp)apply (rule set-mp[where B = transitions N and A = G ], assumption+)apply (simp add : presetSet-def postsetSet-def preset-def postset-def )
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A Appendixapply (subgoal-ta (M 1 − preset N t ∪ postset N t) ∈ reahable N )prefer 2apply (rule reahable-step[where M 1 = M 1], assumption)apply blastapply (thin-ta G 6= {})apply (thin-ta step N M 1 {t} (M 1 − preset N t ∪ postset N t))apply (thin-ta M 2 = M 1 − presetSet N G ∪ postsetSet N G)apply (subgoal-ta ((M 1 − preset N t ∪ postset N t) − preset N u) ∩ postset N u = {})apply (rule-ta A = (M 1 − preset N t ∪ postset N t) − preset N u and B = postset N uand C = postset N t in noIntersetion-superset , assumption)apply (subgoal-ta postset N t ∩ preset N u = {})apply (rule-ta A = postset N t and B = preset N u in noIntersetion-subsetDi� ,assumption)apply blastapply (subgoal-ta preset N u ⊆ M 1 − preset N t)apply (erule-ta x = t and Q = λt . ∀ u∈G . t 6= u −→ preset N t ∩ preset N u = {}in ballE-in, assumption)apply (erule-ta x = u and Q = λu. t 6= u −→ preset N t ∩ preset N u = {}in ballE-in, assumption)apply (erule impE , assumption)apply (rule-ta M = M 1 and PreT = preset N t in ontatFreeStep-lemma1 )apply (erule-ta x = t and A = transitions N in ballE-in, blast)apply (erule-ta x = t and A = G in ballE-in, blast)apply blastapply (erule-ta x = t and A = G in ballE-in, simp)apply assumptionapply (erule-ta x = u and A = G in ballE-in, simp)apply assumptionapply assumptionapply (thin-ta M 1 ∈ reahable N )apply (thin-ta ∀M∈reahable N . ∀ t∈transitions N . preset N t ⊆ M −→
(M − preset N t) ∩ postset N t = {})apply (thin-ta ∀ t∈transitions N . preset N t ⊆ M 1 −→
(M 1 − preset N t) ∩ postset N t = {})apply blastapply (subgoal-ta preset N u ⊆ (M 1 − preset N t ∪ postset N t))apply (erule-ta x = (M 1 − preset N t ∪ postset N t) in ballE-in, assumption)apply (erule-ta x = u andQ = λu. preset N u ⊆ M 1 − preset N t ∪ postset N t −→

((M 1 − preset N t ∪ postset N t) − preset N u) ∩ postset N u = {}in ballE-in, blast)apply (erule impE , assumption)apply assumption
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apply (thin-ta ∀M∈reahable N . ∀ t∈transitions N . preset N t ⊆ M −→
(M − preset N t) ∩ postset N t = {})apply (thin-ta ∀ t∈transitions N . preset N t ⊆ M 1 −→ (M 1 − preset N t) ∩ postset N t = {})apply (erule-ta x = t and Q = λt . ∀ u∈G . t 6= u −→ preset N t ∩ preset N u = {}in ballE-in, assumption)apply (erule-ta x = u and Q = λu. t 6= u −→ preset N t ∩ preset N u = {}in ballE-in, assumption)by blastlemma ontatFreeStepEquiv :

[[ontatFree N ; M 1 ∈ reahable N ]] =⇒ step N M 1 G M 2 = ontatFreeStep N M 1 G M 2by (rule i�I , simp add : stepImplContatFreeStep, simp add : ontatFreeStepValid)de�nition �nitelyMarked :: ( ′e, ′at)petrinet ⇒ bool where�nitelyMarked N ≡�nite (initial N ) ∧
(∀ t ∈ transitions N . ∃ s ∈ plaes N . (s, t) ∈ �ow N ) ∧
(∀ t ∈ transitions N . �nite (postset N t))lemma �niteStepImplFinitePostSet [intro]:

[[∀ t ∈ G . �nite (postset N t); �nite G ; G ⊆ transitions N ]] =⇒ �nite (postsetSet N G)apply (simp add : postsetSet-def )apply (subgoal-ta {y . ∃ x∈G . (x , y) ∈ �ow N } = (
⋃ t ∈ G . postset N t))prefer 2 apply (simp add : postset-def , blast)apply (erule-ta s = (

⋃ t ∈ G . postset N t) and t = {y . ∃ x∈G . (x , y) ∈ �ow N } in ssubst)by simplemma �nitelyMarkedEverywhere: [[�nitelyMarked N ; M ∈ reahable N ]] =⇒ �nite Mapply (unfold �nitelyMarked-def )apply (erule reahable.indut , simp)apply (erule exE )apply (subgoal-ta �nite G)apply (simp add : step-def )apply (erule onjE )+apply (rule-ta N = N and G = G in �niteStepImplFinitePostSet)apply blastapply assumptionapply assumptionapply (simp add : step-def )apply (erule onjE )+apply (thin-ta M 1 ∈ reahable N )apply (thin-ta �nite (initial N ))apply (thin-ta M 2 = M 1 − presetSet N G ∪ postsetSet N G)apply (thin-ta G 6= {})apply (thin-ta ∀ t∈transitions N . �nite (postset N t))
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A Appendixapply (rule-ta f = λt . SOME s. (s, t) ∈ �ow N in �nite-imageD)apply (subgoal-ta ((λt . SOME s. (s, t) ∈ �ow N ) ` G) ⊆ M 1)apply (erule-ta A = (λt . SOME s. (s, t) ∈ �ow N ) ` G and B = M 1 in �nite-subset)apply assumptionapply (thin-ta �nite M 1)apply (rule subsetI )apply larifyapply (erule-ta A = G and x = t in ballE-in, assumption)apply (erule onjE )+apply (simp add : preset-def )apply (rule-ta Q = λx . x ∈ M 1 in someI2-ex )apply (erule-ta x = t and A = transitions N in ballE-in, blast)apply blastapply blastapply (rule inj-onI , rename-ta t u)apply (rule diretContradition)apply (erule-ta x = t and y = u in ballE-in-double, assumption+)apply (erule impE , assumption, erule onjE )apply (frule-ta x = t and A = transitions N and P = λt . ∃ s ∈ plaes N . (s, t) ∈ �ow Nin ballE-in, blast , assumption)apply (frule-ta x = u and A = transitions N and P = λu. ∃ s ∈ plaes N . (s, u) ∈ �ow Nin ballE-in, blast , assumption)apply (frule-ta A = plaes N and P = λs. (s, t) ∈ �ow N in bexToEx )apply (frule-ta A = plaes N and P = λs. (s, u) ∈ �ow N in bexToEx )apply (frule-ta P = λs. (s, t) ∈ �ow N and Q = λs. (s, u) ∈ �ow Nin some-onnet , assumption+)apply (simp add : preset-def )by blastde�nition distributed N ≡
∃ olo. (∀ t ∈ transitions N . ∀ s ∈ preset N t . olo s t) ∧

(∀ t u M 1 G M 2. (reahable N M 1 ∧ t ∈ G ∧ u ∈ G ∧ step N M 1 G M 2) −→ ¬ olo t u)lemma distributed-by-mapping :
∃ lo. (∀ t ∈ transitions N . ∀ s ∈ preset N t . lo s = lo t) ∧

(∀ t u M 1 G M 2. (reahable N M 1 ∧ t ∈ G ∧ u ∈ G ∧ step N M 1 G M 2) −→lo t 6= lo u) =⇒ distributed Napply (simp add : distributed-def )by (erule exE , rule-ta x = λx y . lo x = lo y in exI )de�nition stepTraes N ≡
{Trae. ∃Gs Ms. foldl (λt (M 1, G , M 2). t ∧ step N M 1 G M 2) True

(zip (initial N # Ms) (zip Gs Ms)) ∧Trae = map (λG . Abs-multiset (λa. ard {t ∈ G . label N t = a ∧ a /∈ silent N })) Gs}de�nition plainify :: ( ′e, ′at)petrinet ⇒ ( ′e, ′e)petrinet80



where plainify N ≡ Abs-petrinet ((plaes N ), (transitions N ), (�ow N ), id , (initial N ), {})lemma petrinet .aess:shows [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒plaes (Abs-petrinet (S , T , F , l , M 0, τSet)) = Sand [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒transitions (Abs-petrinet (S , T , F , l , M 0, τSet)) = Tand [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒�ow (Abs-petrinet (S , T , F , l , M 0, τSet)) = Fand [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒label (Abs-petrinet (S , T , F , l , M 0, τSet)) = land [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒initial (Abs-petrinet (S , T , F , l , M 0, τSet)) = M 0and [[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒silent (Abs-petrinet (S , T , F , l , M 0, τSet)) = τSetby (
(simp add : plaes-def transitions-def �ow-def label-def initial-def silent-def ),
(subgoal-ta Rep-petrinet (Abs-petrinet (S , T , F , l , M 0, τSet)) = (S , T , F , l , M 0, τSet),simp),
(blast intro: Abs-petrinet-inverse)

)+lemma petrinet .unfold-raw :
[[(S , T , F , l , M 0, τSet) = Rep-petrinet N ;

(S , T , F , l , M 0, τSet) ∈ petrinet =⇒ P (Abs-petrinet (S , T , F , l , M 0, τSet))]] =⇒ P Napply (subgoal-ta (S , T , F , l , M 0, τSet) ∈ petrinet)apply (subgoal-ta P (Abs-petrinet (S , T , F , l , M 0, τSet)))apply (simp add : Rep-petrinet-inverse)apply blastby (erule ssubst , rule Rep-petrinet)lemma petrinet .unfold :
[[(plaes N , transitions N , �ow N , label N , initial N , silent N ) ∈ petrinet =⇒P (Abs-petrinet (plaes N , transitions N , �ow N , label N , initial N , silent N ))]]
=⇒ P Napply (rule-ta S = plaes N and T = transitions N and F = �ow N and l = label Nand M 0 = initial N and τSet = silent N in petrinet .unfold-raw)apply (simp add : petrinet-def plaes-def transitions-def �ow-def label-def initial-def silent-def )by blastlemma plainify-suessful-raw [intro!]:
[[(S , T , F , l , M 0, τSet) ∈ petrinet ]] =⇒ plain (plainify (Abs-petrinet (S , T , F , l , M 0, τSet)))apply (simp add : plain-def plainify-def )apply (subgoal-ta (S , T , F , id , M 0, {}) ∈ petrinet , simp add : petrinet .aess)apply (simp add : petrinet-def )apply (unfold wellformed-petrinet-def )apply (simp only : Let-def ) 81



A Appendixby blastlemma plainify-suessful [intro!]: plain (plainify N )apply (rule-ta N = N in petrinet .unfold)by blastendtheory AsynFSMimports Main Multiset Drah�owToolsbegintypedef ( ′at)atsig =
{Σ :: ( ′at set)×( ′at set)×( ′at set).let (Σi , Σo, Στ) = Σ in Σi ∩ Σo = {} ∧ Σi ∩ Στ = {} ∧ Σo ∩ Στ = {}}apply (rule exI [where x = ({}, {}, {})])by simpde�nition input :: ( ′at)atsig ⇒ ′at set where input Σ ≡ fst (Rep-atsig Σ)de�nition output :: ( ′at)atsig ⇒ ′at set where output Σ ≡ fst (snd (Rep-atsig Σ))de�nition inner :: ( ′at)atsig ⇒ ′at set where inner Σ ≡ snd (snd (Rep-atsig Σ))lemma atsig .unfold-raw :
[[(In, Out , Inner) = Rep-atsig Σ;

(In, Out , Inner) ∈ atsig =⇒ P (Abs-atsig (In, Out , Inner))]] =⇒ P Σapply (subgoal-ta (In, Out , Inner) ∈ atsig)apply (subgoal-ta P (Abs-atsig (In, Out , Inner)))apply (simp add : Rep-atsig-inverse)apply blastby (erule ssubst , rule Rep-atsig)lemma atsig .unfold :
[[(input Σ, output Σ, inner Σ) ∈ atsig =⇒ P (Abs-atsig (input Σ, output Σ, inner Σ))]]
=⇒ P Σapply (rule-ta In = input Σ and Out = output Σ and Inner = inner Σ in atsig .unfold-raw)apply (simp add : atsig-def input-def output-def inner-def )by blastlemma input-aess [simp]:

(In, Out , Inner) ∈ atsig =⇒ input (Abs-atsig (In, Out , Inner)) = Inapply (simp add : input-def )apply (subgoal-ta Rep-atsig (Abs-atsig (In, Out , Inner)) = (In, Out , Inner), simp)by (blast intro: Abs-atsig-inverse)lemma output-aess [simp]:
(In, Out , Inner) ∈ atsig =⇒ output (Abs-atsig (In, Out , Inner)) = Outapply (simp add : output-def )82



apply (subgoal-ta Rep-atsig (Abs-atsig (In, Out , Inner)) = (In, Out , Inner), simp)by (blast intro: Abs-atsig-inverse)lemma inner-aess [simp]:
(In, Out , Inner) ∈ atsig =⇒ inner (Abs-atsig (In, Out , Inner)) = Innerapply (simp add : inner-def )apply (subgoal-ta Rep-atsig (Abs-atsig (In, Out , Inner)) = (In, Out , Inner), simp)by (blast intro: Abs-atsig-inverse)typedef ( ′q , ′at)asynfsm =
{A :: ( ′at atsig)×( ′q set)×( ′q)×(( ′q×( ′at set)×( ′at set)× ′q)set).let (Σ, Q , q0, stepRel) = A in (q0 ∈ Q ∧ (∀ (q , In, Out , q ′) ∈ stepRel . In 6= {} ∧q ∈ Q ∧ q ′ ∈ Q ∧ Out ⊆ output Σ ∧ In ⊆ (input Σ ∪ inner Σ)))}apply (rule exI [where x = let q = (SOME x . True) in (Abs-atsig ({}, {}, {}), {q}, q , {})])by (simp add : Let-def )de�nition ations :: ( ′q , ′at)asynfsm ⇒ ( ′at atsig) where ations A ≡ fst (Rep-asynfsm A)de�nition states :: ( ′q , ′at)asynfsm ⇒ ( ′q set) where states A ≡ fst (snd (Rep-asynfsm A))de�nition initial :: ( ′q , ′at)asynfsm ⇒ ′q where initial A ≡ fst (snd (snd (Rep-asynfsm A)))de�nition steps :: ( ′q , ′at)asynfsm ⇒ (( ′q×( ′at set)×( ′at set)× ′q)set)where steps A = snd (snd (snd (Rep-asynfsm A)))lemma asynfsm.unfold-raw :
[[(Σ, Q , q0, stepRel) = Rep-asynfsm A;

(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ P (Abs-asynfsm (Σ, Q , q0, stepRel))]] =⇒ P Aapply (subgoal-ta (Σ, Q , q0, stepRel) ∈ asynfsm)apply (subgoal-ta P (Abs-asynfsm (Σ, Q , q0, stepRel)))apply (simp add : Rep-asynfsm-inverse)apply blastby (erule ssubst , rule Rep-asynfsm)lemma asynfsm.unfold :
[[(ations A, states A, initial A, steps A) ∈ asynfsm =⇒P (Abs-asynfsm (ations A, states A, initial A, steps A))]] =⇒ P Aapply (rule-ta Σ = ations A and Q = states A and q0 = initial Aand stepRel = steps A in asynfsm.unfold-raw)apply (simp add : asynfsm-def ations-def states-def initial-def steps-def )by blastde�nition step :: ( ′q , ′at)asynfsm ⇒ ′q ⇒ ( ′at set) ⇒ ( ′at set) ⇒ ′q ⇒ boolwhere step A q In Out q ′ ≡ (q , In, Out , q ′) ∈ steps Alemma ations-aess [simp]:
(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ ations (Abs-asynfsm (Σ, Q , q0, stepRel)) = Σapply (simp add : ations-def )apply (subgoal-ta Rep-asynfsm (Abs-asynfsm (Σ, Q , q0, stepRel)) = (Σ, Q , q0, stepRel), simp)by (blast intro: Abs-asynfsm-inverse) 83



A Appendixlemma states-aess [simp]:
(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ states (Abs-asynfsm (Σ, Q , q0, stepRel)) = Qapply (simp add : states-def )apply (subgoal-ta Rep-asynfsm (Abs-asynfsm (Σ, Q , q0, stepRel)) = (Σ, Q , q0, stepRel), simp)by (blast intro: Abs-asynfsm-inverse)lemma initial-aess [simp]:
(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ initial (Abs-asynfsm (Σ, Q , q0, stepRel)) = q0apply (simp add : initial-def )apply (subgoal-ta Rep-asynfsm (Abs-asynfsm (Σ, Q , q0, stepRel)) = (Σ, Q , q0, stepRel), simp)by (blast intro: Abs-asynfsm-inverse)lemma steps-aess [simp]:
(Σ, Q , q0, stepRel) ∈ asynfsm =⇒ steps (Abs-asynfsm (Σ, Q , q0, stepRel)) = stepRelapply (simp add : steps-def )apply (subgoal-ta Rep-asynfsm (Abs-asynfsm (Σ, Q , q0, stepRel)) = (Σ, Q , q0, stepRel), simp)by (blast intro: Abs-asynfsm-inverse)lemma initial-in-states [intro]: initial A ∈ states Aapply (simp add : initial-def states-def )apply (subgoal-ta Rep-asynfsm A ∈ asynfsm)prefer 2 apply (rule Rep-asynfsm)by (larsimp simp: asynfsm-def )lemma nothing-in-emptyset : A = {} =⇒ y /∈ A by blastlemma step-respets-signature [rule-format ]:shows step A q1 In Out q2 −→ Out ⊆ output (ations A)and step A q1 In Out q2 −→ In ⊆ (input (ations A)) ∪ (inner (ations A))and step A q1 In Out q2 −→ In ∩ output (ations A) = {}and step A q1 In Out q2 −→ Out ∩ ((input (ations A)) ∪ (inner (ations A))) = {}apply sueedapply (rule asynfsm.unfold)apply (larsimp simp: step-def steps-aess ations-aess)apply (unfold asynfsm-def , larsimp)apply (erule-ta x = (q1, In, Out , q2) in ballE-in, assumption, blast)apply (rule asynfsm.unfold)apply (larsimp simp: step-def steps-aess ations-aess)apply (unfold asynfsm-def , larsimp)apply (erule-ta x = (q1, In, Out , q2) in ballE-in, assumption, blast)apply (rule asynfsm.unfold)apply (larsimp simp: step-def steps-aess ations-aess)apply (unfold asynfsm-def , larsimp)apply (erule-ta x = (q1, In, Out , q2) in ballE-in, assumption, larsimp)apply (rule atsig .unfold)apply (subst output-aess, assumption)84



apply (unfold atsig-def )apply (larsimp, rule equals0I , (drule-ta y = y in nothing-in-emptyset)+, blast)apply (rule asynfsm.unfold)apply (larsimp simp: step-def steps-aess ations-aess)apply (unfold asynfsm-def , larsimp)apply (erule-ta x = (q1, In, Out , q2) in ballE-in, assumption, larsimp)apply (rule atsig .unfold)apply (subst input-aess, assumption)apply (subst inner-aess, assumption)apply (unfold atsig-def )by (larsimp, rule equals0I , (drule-ta y = y in nothing-in-emptyset)+, blast)de�nition serial :: ( ′q , ′at)asynfsm ⇒ boolwhere serial A ≡ ∀ q . ∀ In. ∀Out . ∀ q ′. step A q In Out q ′ −→ (∃ x . In = {x})de�nition deterministi :: ( ′q , ′at)asynfsm ⇒ boolwhere deterministi A ≡ ∀ q . ∀ In. ∃ !Out . ∃ !q ′. step A q In Out q ′de�nition isomorphi :: ( ′q1,
′at)asynfsm ⇒ ( ′q2,

′at)asynfsm ⇒ boolwhere isomorphi A B ≡ ations A = ations B ∧ (∃ϕ. ϕ (initial A) = initial B ∧
(∀ q . ∀ In. ∀Out . ∀ q ′. step A q In Out q ′ = step B (ϕ q) In Out (ϕ q ′)))de�nition math :: ′at atsig ⇒ ′at atsig ⇒ boolwhere math Σ Σ ′ ≡ input Σ ∩ input Σ ′ = {} ∧output Σ ∩ output Σ ′ = {} ∧

(input Σ ∪ output Σ ∪ inner Σ) ∩ inner Σ ′ = {} ∧
(input Σ ′ ∪ output Σ ′ ∪ inner Σ ′) ∩ inner Σ = {}lemma impIfalse: ¬P =⇒ P −→ Q by blastde�nition set-aggr-�lter where set-aggr-�lter F L ≡ foldl (λSum S . Sum ∪ (S ∩ F )) {} Llemma set-aggr-�lter .lemma1 : a ∩ F = a ∩ F ∪ {} ∩ F by blastlemma set-aggr-�lter .absorb [simp]: set-aggr-�lter F list ∩ F = set-aggr-�lter F listapply (simp add : set-aggr-�lter-def )apply (indut-ta list , simp)apply simpapply (subgoal-ta foldl (λSum S . Sum ∪ S ∩ F ) (a ∩ F ∪ {} ∩ F ) list =a ∩ F ∪ foldl (λSum S . Sum ∪ S ∩ F ) {} list ∩ F )prefer 2apply (rule semigroup-add .foldl-asso)apply (simp add : semigroup-add-def , blast)apply (subst (3 ) set-aggr-�lter .lemma1 )by (simp, blast)lemma set-aggr-�lter .univ-is-union [simp]: set-aggr-�lter UNIV list = foldl op ∪ {} listby (simp add : set-aggr-�lter-def ) 85



A Appendixlemma set-aggr-�lter .assoiative [simp]:shows set-aggr-�lter F (a # list) = (a ∩ F ) ∪ set-aggr-�lter F listand set-aggr-�lter F (list @ [a]) = (a ∩ F ) ∪ set-aggr-�lter F listapply sueedapply (simp add : set-aggr-�lter-def )apply (subgoal-ta foldl (λSum S . Sum ∪ S ∩ F ) (a ∩ F ∪ {} ∩ F ) list =a ∩ F ∪ foldl (λSum S . Sum ∪ S ∩ F ) {} list ∩ F )prefer 2apply (rule semigroup-add .foldl-asso)apply (simp add : semigroup-add-def , blast)apply (subst (2 ) set-aggr-�lter .lemma1 )apply (erule trans)apply (rule-ta f = λx . a ∩ F ∪ x in eq-ong-fun-app)apply (fold set-aggr-�lter-def )apply (rule set-aggr-�lter .absorb)by (simp add : set-aggr-�lter-def , blast)lemma set-aggr-�lter .rev [simp]: set-aggr-�lter F (rev list) = set-aggr-�lter F listby (indut-ta list , simp-all add : set-aggr-�lter .assoiative)lemma set-aggr-�lter .zero [simp]: set-aggr-�lter F [] = {}by (simp add : set-aggr-�lter-def )lemma set-aggr-�lter .addsub [rule-format ]:set-aggr-�lter Add List ⊆ P −→ set-aggr-�lter (P − M ) List ∩ Sub = {} −→set-aggr-�lter (P − M ) List = set-aggr-�lter ((Add ∪ P) − (Sub ∪ M )) Listapply (indut-ta List , simp)apply (rule impI )apply larsimpapply (subgoal-ta a ∩ (P − M ) = a ∩ ((Add ∪ P) − (M ∪ Sub)))apply blastby blastlemma set-aggr-�lter .subset-of-�lter [rule-format ]: set-aggr-�lter F List ⊆ Fapply (indut-ta List , simp)by bestsimpde�nition bool-and-map where bool-and-map f L ≡ foldl (λt e. t ∧ f e) True Llemma bool-and-map.assoiative [simp]:shows bool-and-map f (a # List) = (f a ∧ bool-and-map f List)and bool-and-map f (List @ [a]) = (f a ∧ bool-and-map f List)apply sueedapply (simp add : bool-and-map-def )apply (subgoal-ta foldl (λt e. t ∧ f e) (True ∧ f a) List =
(f a ∧ foldl (λt e. t ∧ f e) True List))86



prefer 2apply (indut-ta List , simp)apply larsimpapply (ase-ta f aa)apply larsimpapply larsimpapply (subgoal-ta foldl (λt e. t ∧ f e) False list = False)apply blastapply (indut-ta list , simp)apply simpapply bestsimpby (simp add : bool-and-map-def , blast)lemma bool-and-map.absorb [simp]: bool-and-map f [] = Trueby (bestsimp simp: bool-and-map-def )lemma bool-and-map.every [intro,rule-format ]: bool-and-map f List −→ (∀ x ∈ set List . f x )apply (indut-ta List , simp add : bool-and-map-def )by simplemma bool-and-map.everyA: bool-and-map f List =⇒ ∀ x ∈ set List . f xapply (rule-ta P = bool-and-map f List and Q = ∀ x ∈ set List . f x in impE )by (blast intro: bool-and-map.every)+lemma bool-and-map.everyR [intro]: ∀ x ∈ set List . f x =⇒ bool-and-map f Listapply (rule-ta Q = bool-and-map f List and P = ∀ x ∈ set List . f x in impE )apply (indut-ta List , simp add : bool-and-map-def )by bestsimp+primre mathFSMList :: (( ′q , ′at)asynfsm)list ⇒ bool wheremathFSMList [] = True |mathFSMList (A # L) = (bool-and-map (λe. math (ations A) (ations e)) L ∧mathFSMList L)de�nition asynCompositionRaw ::
(( ′q , ′at)asynfsm)list ⇒

(( ′at atsig) × ( ′q list × ′at multiset)set × ( ′q list × ′at multiset) ×
(( ′q list × ′at multiset) × ′at set × ′at set × ′q list × ′at multiset)set)where asynCompositionRaw L ≡let inputs = ((

⋃A ∈ set L. input (ations A)) − (
⋃A ∈ set L. output (ations A))) inlet outputs = ((

⋃A ∈ set L. output (ations A)) − (
⋃A ∈ set L. input (ations A))) inlet inners = ((

⋃A ∈ set L. inner (ations A)) ∪ (
⋃A ∈ set L. input (ations A) ∩

(
⋃A ∈ set L. output (ations A)))) inlet Q = ((list-times-ompr L (λA. states A)) × (powermultiset inners)) in

(
(Abs-atsig (inputs, outputs, inners)),Q , 87



A Appendix
((map (λA. initial A) L), {#}),
{(q1, In, Out , q2). ∃ Inl . ∃Outl . let (ql1, msg1) = q1 in let (ql2, msg2) = q2 inbool-and-map (λ(qi1, ini , outi , qi2, Ai).

((step Ai qi1 ini outi qi2 ∧ multiset-of (ini ∩ input (ations Ai) ∩ inners) ⊆# msg1)
∨ (ini = {} ∧ outi = {} ∧ qi1 = qi2)))

(zip ql1 (zip Inl (zip Outl (zip ql2 L)))) ∧In = set-aggr-�lter (inputs ∪ inners) Inl ∧ In 6= {} ∧Out = set-aggr-�lter outputs Outl ∧msg2 = (msg1 − multiset-of In) + multiset-of (set-aggr-�lter inners Outl) ∧q1 ∈ Q ∧ q2 ∈ Q ∧length ql1 = length L ∧ length Inl = length L ∧ length Outl = length L ∧length ql2 = length L}
)de�nition asynComposition :: (( ′q , ′at)asynfsm)list ⇒ ( ′q list × ′at multiset , ′at)asynfsmwhere asynComposition L ≡ Abs-asynfsm (asynCompositionRaw L)lemma mathFSMList-no-on�it-front [intro]:shows mathFSMList (A # list) =⇒

(input (ations A) ∩ (
⋃A ∈ set list . input (ations A))) = {}and mathFSMList (A # list) =⇒

(output (ations A) ∩ (
⋃A ∈ set list . output (ations A))) = {}and mathFSMList (A # list) =⇒

(inner (ations A) ∩ (
⋃A ∈ set list . input (ations A) ∪ output (ations A) ∪inner (ations A))) = {}and mathFSMList (A # list) =⇒

((input (ations A) ∪ output (ations A) ∪ inner (ations A)) ∩
(
⋃A ∈ set list . inner (ations A))) = {}apply sueedapply (larsimp simp: mathFSMList-def )apply (rule equals0I )apply larsimpapply (drule-ta List = list and f = λe. math (ations A) (ations e) and x = Aain bool-and-map.every , assumption)apply (larsimp simp: math-def )apply blastapply (larsimp simp: mathFSMList-def )apply (rule equals0I )apply larsimpapply (drule-ta List = list and f = λe. math (ations A) (ations e) and x = Aain bool-and-map.every , assumption)apply (larsimp simp: math-def )apply blastapply (larsimp simp: mathFSMList-def )apply (rule equals0I )apply larsimpapply (drule-ta List = list and f = λe. math (ations A) (ations e) and x = Aa88



in bool-and-map.every , assumption)apply (larsimp simp: math-def )apply blastapply (larsimp simp: mathFSMList-def )apply (rule equals0I )apply larsimpapply (drule-ta List = list and f = λe. math (ations A) (ations e) and x = Aain bool-and-map.every , assumption)apply (larsimp simp: math-def )by blastlemma Union-Bun-distrib: (
⋃ a ∈ A. S a ∪ T a) = (

⋃ a ∈ A. S a) ∪ (
⋃ a ∈ A. T a) by blastlemma abstration: [[

∧x . P x ]] =⇒ P xapply (erule-ta x = x in meta-allE )by assumptionlemma meta-abstration: [[Q x ;
∧x . Q x =⇒ P x ]] =⇒ P xapply (erule-ta x = x in meta-allE )by blastlemma meta-abstration6 :

[[Q a b  d e f ; ∧a b  d e f . Q a b  d e f =⇒ P a b  d e f ]] =⇒ P a b  d e fapply (erule-ta x = a in meta-allE )apply (erule-ta x = b in meta-allE )apply (erule-ta x =  in meta-allE )apply (erule-ta x = d in meta-allE )apply (erule-ta x = e in meta-allE )apply (erule-ta x = f in meta-allE )by blastlemma mathFSMList-produes-atsig-lemma2 : [[x ∈ A; x ∈ B ; A ∩ B = {}]] =⇒ Falseby blastlemma mathFSMList-produes-atsig-lemma1 :
[[(d − e) ∩ (e − d) = {}; (d − e) ∩ (f ∪ d ∩ e) = {} ∧ (e − d) ∩ (f ∪ d ∩ e) = {};a ∩ d = {}; b ∩ e = {} ∧  ∩ (d ∪ e ∪ f ) = {}; (a ∪ b ∪ ) ∩ f = {};a ∩ b = {}; a ∩  = {}; b ∩  = {}]] =⇒
(a ∪ d − (b ∪ e)) ∩ (b ∪ e − (a ∪ d)) =
{} ∧ (a ∪ d − (b ∪ e)) ∩ ( ∪ f ∪ (a ∪ d) ∩ (b ∪ e)) = {} ∧

(b ∪ e − (a ∪ d)) ∩ ( ∪ f ∪ (a ∪ d) ∩ (b ∪ e)) = {}by ((rule onjI )? , rule equals0I , ((drule-ta y = y in nothing-in-emptyset)+, blast))+lemma mathFSMList-produes-atsig [rule-format ]:mathFSMList L −→ (
(
⋃A∈set L. input (ations A)) − (

⋃A∈set L. output (ations A)),
(
⋃A∈set L. output (ations A)) − (

⋃A∈set L. input (ations A)),
(
⋃A∈set L. inner (ations A)) ∪ (

⋃A∈set L. input (ations A)) ∩ 89



A Appendix
(
⋃A∈set L. output (ations A))

) ∈ atsigapply (indut-ta L, simp add : atsig-def )apply (rule impI )apply (insert mathFSMList-no-on�it-front)apply (erule-ta x = a in meta-allE )+apply (erule-ta x = list in meta-allE )+apply (simp add : atsig-def )apply (insert Union-Bun-distrib)[1 ]apply (erule-ta x = set list in meta-allE )apply (erule-ta x = λa. (input (ations a) ∪ output (ations a)) in meta-allE )apply (erule-ta x = λa. inner (ations a) in meta-allE )apply simpapply (insert Union-Bun-distrib)[1 ]apply (erule-ta x = set list in meta-allE )apply (erule-ta x = λa. input (ations a) in meta-allE )apply (erule-ta x = λa. output (ations a) in meta-allE )apply simpapply (subgoal-ta input (ations a) ∩ output (ations a) = {} ∧input (ations a) ∩ inner (ations a) = {} ∧output (ations a) ∩ inner (ations a) = {})prefer 2apply (rule atsig .unfold)apply (fore simp: atsig-def )apply (rule-ta a = input (ations a) andb = output (ations a) and = inner (ations a) andd =
⋃ a∈set list . input (ations a) ande =
⋃ a∈set list . output (ations a) andf =
⋃ a∈set list . inner (ations a) andQ = λa b  d e f . (d − e) ∩ (e − d) = {} ∧

(d − e) ∩ (f ∪ d ∩ e) = {} ∧ (e − d) ∩ (f ∪ d ∩ e) = {} ∧a ∩ d = {} ∧ b ∩ e = {} ∧  ∩ (d ∪ e ∪ f ) = {} ∧
(a ∪ b ∪ ) ∩ f = {} ∧a ∩ b = {} ∧ a ∩  = {} ∧ b ∩  = {} in meta-abstration6 )apply simpapply (rename-ta Ai Ao Ainner Li Lo Linner)by (rule-ta a = Ai and b = Ao and  = Ainner and d = Li and e = Lo and f = Linnerin mathFSMList-produes-atsig-lemma1 , simp+)lemma asynCompositionValid [intro]: mathFSMList L =⇒ asynCompositionRaw L ∈ asynfsmapply (simp add : asynCompositionRaw-def asynfsm-def Let-def )90



apply (rule onjI )apply (simp add : list-times-ompr-def )apply (indut-ta L, simp)apply (simp add : initial-in-states)apply (rule onjI )apply (simp add : powermultiset-def )apply (rule allI )+apply (rename-ta ql1 M 1 In Out ql2 M 2)apply (rule impI )apply ((erule exE )+, (erule onjE )+)apply ((rule onjI )? , assumption)+apply (rule onjI )apply (subst output-aess, fastsimp simp: mathFSMList-produes-atsig)apply (larsimp simp: set-aggr-�lter .subset-of-�lter)apply (subst input-aess, fastsimp simp: mathFSMList-produes-atsig)apply (subst inner-aess, fastsimp simp: mathFSMList-produes-atsig)by (larsimp simp: set-aggr-�lter .subset-of-�lter)lemma asynCompositionValidSubst [simp]:mathFSMList L =⇒Rep-asynfsm (Abs-asynfsm (asynCompositionRaw L)) = asynCompositionRaw Lby (bestsimp simp: Abs-asynfsm-inverse asynCompositionValid)lemma asynCompositionCommutative:
[[mathFSMList [A, B ]; mathFSMList [B , A]]] =⇒isomorphi (asynComposition [A, B ]) (asynComposition [B , A])apply (insert asynCompositionValid [where L = [A, B ]])apply (insert asynCompositionValid [where L = [B , A]])apply simpapply (unfold isomorphi-def )apply (rule onjI )apply (simp add : asynComposition-def asynCompositionRaw-def Let-def )apply ((unfold math-def )[1 ], (erule onjE )+)apply (subgoal-ta

(input (ations A) ∪ input (ations B) − (output (ations A) ∪ output (ations B))) =
(input (ations B) ∪ input (ations A) − (output (ations B) ∪ output (ations A))) ∧

(output (ations A) ∪ output (ations B) − (input (ations A) ∪ input (ations B))) =
(output (ations B) ∪ output (ations A) − (input (ations B) ∪ input (ations A))) ∧

(inner (ations A) ∪ inner (ations B) ∪ (input (ations A) ∪ input (ations B)) ∩
(output (ations A) ∪ output (ations B))) =

(inner (ations B) ∪ inner (ations A) ∪ (input (ations B) ∪ input (ations A)) ∩
(output (ations B) ∪ output (ations A))))apply ((erule onjE )+, simp)apply blastThe next line gives the atual mapping funtion. 91



A Appendixapply (rule-ta x = λ(L, M ). (rev L, M ) in exI )apply (simp add : split-def )apply (rule onjI )apply (simp add : asynComposition-def asynCompositionRaw-def Let-def )apply (rule allI )+apply (rename-ta ql1 M 1 In Out ql2 M 2)apply (simp add : asynComposition-def asynCompositionRaw-def Let-def step-def )apply (rule i�I )apply (erule exE )+apply (rule-ta x = rev Inl in exI )apply (rule-ta x = rev Outl in exI )The following organizes meaningful names for the omponents of the omposite lists and provesthat they indeed have length two.apply (subgoal-ta (∃ qla1 qlb1. ql1 = [qla1, qlb1]) ∧ (∃ Inla Inlb. Inl = [Inla, Inlb]) ∧
(∃Outla Outlb. Outl = [Outla, Outlb]) ∧ (∃ qla2 qlb2. ql2 = [qla2, qlb2]))prefer 2apply (subgoal-ta ql1 = [hd ql1, hd (tl ql1)] ∧ Inl = [hd Inl , hd (tl Inl)] ∧Outl = [hd Outl , hd (tl Outl)] ∧ ql2 = [hd ql2, hd (tl ql2)])prefer 2 apply ((erule onjE )+, ((rule onjI )? , simp add : list-�xlen-expl2 )+)[1 ]apply (erule onjE )+apply (rule onjI , rule-ta x = hd ql1 in exI , rule-ta x = hd (tl ql1) in exI , assumption)apply (rule onjI , rule-ta x = hd Inl in exI , rule-ta x = hd (tl Inl) in exI , assumption)apply (rule onjI , rule-ta x = hd Outl in exI , rule-ta x = hd (tl Outl) in exI , assumption)apply ( rule-ta x = hd ql2 in exI , rule-ta x = hd (tl ql2) in exI , assumption)apply (erule onjE )+apply (erule exE )+Main proof line ontinues below.apply (rule onjI , simp)apply (rule onjI )apply (ase-ta Inlb = {}, fore)apply (subst Un-ommute[of inner (ations B) inner (ations A)])apply (subst Un-ommute[of input (ations B) input (ations A)])apply (subst Un-ommute[of output (ations B) output (ations A)])apply simpapply (ase-ta Inla = {}, fore)apply (subst Un-ommute[of inner (ations B) inner (ations A)])apply (subst Un-ommute[of input (ations B) input (ations A)])apply (subst Un-ommute[of output (ations B) output (ations A)])apply simpapply (rule onjI , simp, blast)apply (rule onjI , assumption)apply (rule onjI , simp, blast)apply (rule onjI )apply simp92



apply (rule-ta f = Drah�owTools.multiset-of in eq-ong-fun-app)apply blast

93



A Appendixapply (subgoal-ta
(inner (ations B) ∪ inner (ations A) ∪ (input (ations B) ∪ input (ations A)) ∩

(output (ations B) ∪ output (ations A))) =
(inner (ations A) ∪ inner (ations B) ∪ (input (ations A) ∪ input (ations B)) ∩

(output (ations A) ∪ output (ations B))))prefer 2 apply blastapply ((rule onjI )? , simp)+apply (erule exE )+apply (rule-ta x = rev Inl in exI )apply (rule-ta x = rev Outl in exI )The following organizes meaningful names for the omponents of the omposite lists and provesthat they indeed have length two.apply (subgoal-ta (∃ qla1 qlb1. ql1 = [qla1, qlb1]) ∧ (∃ Inla Inlb. Inl = [Inla, Inlb]) ∧
(∃Outla Outlb. Outl = [Outla, Outlb]) ∧ (∃ qla2 qlb2. ql2 = [qla2, qlb2]))prefer 2apply (subgoal-ta ql1 = [hd ql1, hd (tl ql1)] ∧ Inl = [hd Inl , hd (tl Inl)] ∧Outl = [hd Outl , hd (tl Outl)] ∧ ql2 = [hd ql2, hd (tl ql2)])prefer 2 apply ((erule onjE )+, ((rule onjI )? , simp add : list-�xlen-expl2 )+)[1 ]apply (erule onjE )+apply (rule onjI , rule-ta x = hd ql1 in exI , rule-ta x = hd (tl ql1) in exI , assumption)apply (rule onjI , rule-ta x = hd Inl in exI , rule-ta x = hd (tl Inl) in exI , assumption)apply (rule onjI , rule-ta x = hd Outl in exI , rule-ta x = hd (tl Outl) in exI , assumption)apply ( rule-ta x = hd ql2 in exI , rule-ta x = hd (tl ql2) in exI , assumption)apply (erule onjE )+apply (erule exE )+Main proof line ontinues below.apply (rule onjI )apply simpapply (rule onjI )apply (ase-ta Inlb = {}, fore)apply (subst Un-ommute[of inner (ations A) inner (ations B)])apply (subst Un-ommute[of input (ations A) input (ations B)])apply (subst Un-ommute[of output (ations A) output (ations B)])apply simpapply (ase-ta Inla = {}, fore)apply (subst Un-ommute[of inner (ations A) inner (ations B)])apply (subst Un-ommute[of input (ations A) input (ations B)])apply (subst Un-ommute[of output (ations A) output (ations B)])apply simpapply (rule onjI , simp, blast)apply (rule onjI , assumption)apply (rule onjI , simp, blast)94



apply (rule onjI )apply simpapply (rule-ta f = Drah�owTools.multiset-of in eq-ong-fun-app)apply blastapply (subgoal-ta
(inner (ations B) ∪ inner (ations A) ∪ (input (ations B) ∪ input (ations A)) ∩

(output (ations B) ∪ output (ations A))) =
(inner (ations A) ∪ inner (ations B) ∪ (input (ations A) ∪ input (ations B)) ∩

(output (ations A) ∪ output (ations B))))prefer 2 apply blastby ((rule onjI )? , simp)+lemma mathFSMList .trivial [intro]: mathFSMList [] by simplemma mathFSMList .inherit [rule-format ]: mathFSMList (A # L) −→ mathFSMList Lby bestsimplemma set-aggr-�lter-asso-�nite [intro,rule-format ]:
(∀ x ∈ set List . �nite x ) −→ �nite (set-aggr-�lter F List)apply (indut-ta List)apply (bestsimp simp: set-aggr-�lter-def )by simplemma step-not-empty [intro]: ¬ step A q1 {} Out q2by (fore simp: step-def asynfsm-def intro: asynfsm.unfold)lemma list-times-ompr-same-length [simp,rule-format ]:
∀ x . x ∈ list-times-ompr L f −→ length x = length Lby (indut-ta L, simp+)lemma step-asyn-implies-length [simp]:shows [[mathFSMList L; step (asynComposition L) q1 In Out q2]] =⇒length (fst q1) = length Land [[mathFSMList L; step (asynComposition L) q1 In Out q2]] =⇒ length (fst q2) = length Lapply (simp add : step-def )apply (rule-ta A = (asynComposition L) in asynfsm.unfold)apply (simp add : asynfsm-def )apply (erule-ta onjE )apply (erule-ta x = (q1, In, Out , q2) in ballE-in, assumption)apply larsimpapply (thin-ta Out ⊆ output (ations (asynComposition L)))apply (thin-ta In ⊆ input (ations (asynComposition L)) ∪inner (ations (asynComposition L)))apply (thin-ta In 6= {})apply (thin-ta initial (asynComposition L) ∈ states (asynComposition L))apply (thin-ta (q1, In, Out , q2) ∈ steps (asynComposition L))apply (thin-ta q2 ∈ states (asynComposition L))apply (drule-ta asynCompositionValid) 95



A Appendixapply (bestsimp simp: asynComposition-def asynCompositionRaw-def Let-def )apply (simp add : step-def )apply (rule-ta A = (asynComposition L) in asynfsm.unfold)apply (simp add : asynfsm-def )apply (erule-ta onjE )apply (erule-ta x = (q1, In, Out , q2) in ballE-in, assumption)apply larsimpapply (thin-ta Out ⊆ output (ations (asynComposition L)))apply (thin-ta In ⊆ input (ations (asynComposition L)) ∪inner (ations (asynComposition L)))apply (thin-ta In 6= {})apply (thin-ta initial (asynComposition L) ∈ states (asynComposition L))apply (thin-ta (q1, In, Out , q2) ∈ steps (asynComposition L))apply (thin-ta q1 ∈ states (asynComposition L))apply (drule-ta asynCompositionValid)by (bestsimp simp: asynComposition-def asynCompositionRaw-def Let-def )lemma in-set-implies-index [intro,rule-format ]: x ∈ set L −→ (∃ i . L ! i = x ∧ i < length L)apply (indut-ta L)apply simpapply simpapply (rule onjI )apply (rule impI , rule-ta x = 0 in exI , simp)apply (rule impI )apply (erule-ta impE , assumption)apply (erule-ta exE )apply (rule-ta x = Su i in exI )by simplemma list-index-shift [intro,rule-format ]:
∀ i . i < Su (length list) −→ 0 < i −→ (a # list) ! i = list ! (i − 1 )apply (indut-ta list , simp)apply (rule allI )apply (ase-ta i , simp)by simplemma mathFSMList-shared-same-index [intro,simp,rule-format ]:mathFSMList L −→ I 6= {} −→
(∀ i . i < length L −→ (∀ j . j < length L −→I ⊆ input (ations (L ! i)) ∪ inner (ations (L ! i)) −→I ⊆ input (ations (L ! j )) ∪ inner (ations (L ! j )) −→ i = j ))apply (indut-ta L, simp)apply larsimpapply (ase-ta i = 0 )apply (ase-ta j = 0 )apply blastapply (subgoal-ta (a # list) ! i = a)96



prefer 2 apply simpapply (frule-ta bool-and-map.everyA)apply (erule-ta x = list ! (j − 1 ) in ballE-in, simp)apply (unfold math-def )[1 ]apply (subgoal-ta (a # list) ! j = list ! (j − 1 ))prefer 2 apply (erule list-index-shift , simp)apply larsimpapply (rule-ta a = input (ations a) and b = output (ations a) and  = inner (ations a)and d = input (ations (list ! (j − Su 0 ))) and e = output (ations (list ! (j − Su 0 )))and f = inner (ations (list ! (j − Su 0 )))and Q = λa b  d e f . I 6= {} ∧ I ⊆ a ∪  ∧ I ⊆ d ∪ f ∧ (a ∪ b ∪ ) ∩ f = {} ∧
(d ∪ e ∪ f ) ∩  = {} in meta-abstration6 )apply blastapply (erule onjE )+apply (subgoal-ta I = {}, simp)apply (rule equals0I )apply (drule-ta y = y in nothing-in-emptyset)+apply blastapply (ase-ta j = 0 )apply (subgoal-ta (a # list) ! j = a)prefer 2 apply simpapply (frule-ta bool-and-map.everyA)apply (erule-ta x = list ! (i − 1 ) in ballE-in, simp)apply (unfold math-def )[1 ]apply (subgoal-ta (a # list) ! i = list ! (i − 1 ))prefer 2 apply (erule list-index-shift , simp)apply larsimpapply (rule-ta a = input (ations a) and b = output (ations a) and  = inner (ations a)and d = input (ations (list ! (i − Su 0 ))) and e = output (ations (list ! (i − Su 0 )))and f = inner (ations (list ! (i − Su 0 )))and Q = λa b  d e f . I 6= {} ∧ I ⊆ a ∪  ∧ I ⊆ d ∪ f ∧ (a ∪ b ∪ ) ∩ f = {} ∧
(d ∪ e ∪ f ) ∩  = {} in meta-abstration6 )apply blastapply (erule onjE )+apply (subgoal-ta I = {}, simp)apply (rule equals0I )apply (drule-ta y = y in nothing-in-emptyset)+apply blastapply (erule-ta x = i − 1 in allE )apply (subgoal-ta i − 1 < length list)prefer 2 apply simpapply (erule-ta impE , assumption)apply (erule-ta x = j − 1 in allE )apply (subgoal-ta j − 1 < length list)prefer 2 apply simpapply (erule-ta impE , assumption)apply (subgoal-ta (a # list) ! i = list ! (i − 1 )) 97



A Appendixprefer 2 apply (erule list-index-shift , simp)apply (subgoal-ta (a # list) ! j = list ! (j − 1 ))prefer 2 apply (erule list-index-shift , simp)by simplemma disjE-exl1 : [[P ∨ Q ; [[P ; ¬ Q ]] =⇒ R; Q =⇒ R]] =⇒ R by blastlemma disjE-exl2 : [[P ∨ Q ; P =⇒ R; [[¬ P ; Q ]] =⇒ R]] =⇒ R by blastlemma step-asyn-implies-�nite [intro]:
[[mathFSMList L; step (asynComposition L) q1 In Out q2;

∧x . x ∈ set L =⇒ serial x ]]
=⇒ �nite Inapply (frule-ta asynCompositionValid)apply (larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (rule set-aggr-�lter-asso-�nite)apply (rename-ta Inputi)apply (ase-ta Inputi = {}, blast)apply (drule-ta bool-and-map.everyA)apply (unfold serial-def )apply (fold step-def )apply (unfold set-zip)apply (rename-ta q1 M q2 Inputi)apply (subgoal-ta ∃ !i . i < length Inl ∧ Inl ! i = Inputi ∧step (L ! i) (q1 ! i) Inputi (Outl ! i) (q2 ! i))prefer 2apply (rule ex-ex1I )apply (drule-ta L = Inl in in-set-implies-index )apply (erule exE )apply (rule-ta x = i in exI )apply (rule onjI , simp)apply (rule onjI , simp)apply (erule-ta x = (q1 ! i , Inl ! i , Outl ! i , q2 ! i , L ! i) in ballE , bestsimp)apply (subgoal-ta (q1 ! i , Inl ! i , Outl ! i , q2 ! i , L ! i) ∈

{(q1 ! i , zip Inl (zip Outl (zip q2 L)) ! i) |i . i < min (length q1)(length (zip Inl (zip Outl (zip q2 L))))}, blast)apply (rule ColletI )apply (rule-ta x = i in exI )apply (rule onjI )apply (erule-ta onjE )+apply (subst nth-zip, assumption, bestsimp)apply (subst nth-zip)apply (erule-ta t = length Outl and s = length L in ssubst)apply (erule-ta t = length L and s = length Inl in subst)apply assumptionapply (subgoal-ta length q2 = length L)apply (subst length-zip)98



apply (erule-ta t = length q2 in ssubst)apply (subst lower-semilattie-loale.min-max .less-eq-less-inf .inf-idem)apply (erule-ta t = length L and s = length Inl in subst)apply assumptionapply (rule-ta f = states in list-times-ompr-same-length)apply assumptionapply (subst nth-zip)apply (subgoal-ta length q2 = length L)apply (erule-ta t = length q2 and s = length L in ssubst)apply (erule-ta t = length L and s = length Inl in subst)apply assumptionapply (rule-ta f = states in list-times-ompr-same-length)apply assumptionapply (erule-ta t = length L and s = length Inl in subst)apply assumptionapply (rule re�)apply bestsimpapply (rename-ta i j )apply (subgoal-ta Inputi ⊆ input (ations (L ! i)) ∪ inner (ations (L ! i)))apply (subgoal-ta Inputi ⊆ input (ations (L ! j )) ∪ inner (ations (L ! j )))apply (frule-ta L = L and I = Inputi and i = i and j = jin mathFSMList-shared-same-index )apply (simp)+apply (erule-ta onjE )+apply (erule-ta step-respets-signature)apply (erule-ta onjE )+apply (erule-ta step-respets-signature)apply (erule ex1E )apply (erule onjE )+apply (erule-ta x = L ! i in meta-allE )apply larsimpapply (erule-ta x = q1 ! iand P = λq . ∀ In. (∃Out . Ex (step (L ! i) q In Out)) −→ (∃ x . In = {x}) in allE )apply (erule-ta x = Inl ! iand P = λIn. (∃Out . Ex (step (L ! i) (q1 ! i) In Out)) −→ (∃ x . In = {x}) in allE )apply (subgoal-ta (∃Out . Ex (step (L ! i) (q1 ! i) (Inl ! i) Out)))apply simpapply (erule exE )+apply simpapply (rule-ta x = Outl ! i in exI )apply (rule-ta x = q2 ! i in exI )by assumptionlemma set-aggr-�lter .element-somewhere-in-list [rule-format ]:x ∈ set-aggr-�lter F L −→ (∃ i . x ∈ L ! i ∧ i < length L)apply (indut-ta L, simp add : set-aggr-�lter-def )apply larsimp 99



A Appendixapply (rule onjI )apply (rule impI )apply (rule-ta x = 0 in exI )apply simpapply (ase-ta x ∈ set-aggr-�lter F list)apply larsimpapply (rule-ta x = Su i in exI )apply simpby simpde�nition soure-mahine L inp ≡
(THE i . inp ∈ input (ations (L ! i)) ∪ inner (ations (L ! i)) ∧ i < length L)lemma soure-mahine-input [intro]:

[[mathFSMList L; ∀A ∈ set L. serial A; step (asynComposition L) q1 In Out q2; inp ∈ In]]
=⇒ inp ∈ input (ations (L ! soure-mahine L inp)) ∪inner (ations (L ! soure-mahine L inp))apply (frule-ta asynCompositionValid)apply (larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (drule-ta bool-and-map.everyA)apply (unfold set-zip)apply (rename-ta q1 M q2)apply (unfold soure-mahine-def )apply (subgoal-ta (λP . (λi . P i) (THE i . P i))

(λi . inp ∈ input (ations (L ! i)) ∪ inner (ations (L ! i)) ∧ i < length L), blast)apply (rule theI ′)apply (rule ex-ex1I )apply (drule-ta L = Inl in set-aggr-�lter .element-somewhere-in-list)apply (erule exE )apply (rule-ta x = i in exI )apply (erule-ta x = (q1 ! i , Inl ! i , Outl ! i , q2 ! i , L ! i) in ballE )apply larsimpapply (erule disjE )apply (erule onjE )apply (fold step-def )apply (drule-ta step-respets-signature(2 ))apply blastapply blastapply (subgoal-ta (q1 ! i , Inl ! i , Outl ! i , q2 ! i , L ! i) ∈
{(q1 ! i , zip Inl (zip Outl (zip q2 L)) ! i) |i . i < min (length q1) (length (zip Inl (zip Outl (zip q2 L))))}, blast)apply (rule ColletI )apply (rule-ta x = i in exI )apply (rule onjI )apply (erule-ta onjE )+100



apply (subst nth-zip, assumption, bestsimp)apply (subst nth-zip)apply (erule-ta t = length Outl and s = length L in ssubst)apply (erule-ta t = length L and s = length Inl in subst)apply assumptionapply (subgoal-ta length q2 = length L)apply (subst length-zip)apply (erule-ta t = length q2 in ssubst)apply (subst lower-semilattie-loale.min-max .less-eq-less-inf .inf-idem)apply (erule-ta t = length L and s = length Inl in subst)apply assumptionapply (rule-ta f = states in list-times-ompr-same-length)apply assumptionapply (subst nth-zip)apply (subgoal-ta length q2 = length L)apply (erule-ta t = length q2 and s = length L in ssubst)apply (erule-ta t = length L and s = length Inl in subst)apply assumptionapply (rule-ta f = states in list-times-ompr-same-length)apply assumptionapply (erule-ta t = length L and s = length Inl in subst)apply assumptionapply (rule re�)apply bestsimpapply (rename-ta i j )apply (subgoal-ta {inp} ⊆ input (ations (L ! i)) ∪ inner (ations (L ! i)))apply (subgoal-ta {inp} ⊆ input (ations (L ! j )) ∪ inner (ations (L ! j )))apply (frule-ta L = L and I = {inp} and i = i and j = jin mathFSMList-shared-same-index )by (simp)+lemma soure-mahine-length [intro]:
[[mathFSMList L; ∀A ∈ set L. serial A; step (asynComposition L) q1 In Out q2; inp ∈ In]]
=⇒ soure-mahine L inp < length Lapply (simp add : soure-mahine-def )apply (subgoal-ta

(λi . (inp ∈ input (ations (L ! i)) ∨ inp ∈ inner (ations (L ! i))) ∧ i < length L)
(THE i . (inp ∈ input (ations (L ! i)) ∨ inp ∈ inner (ations (L ! i))) ∧ i < length L),fore)apply (rule theI ′)apply (rule ex-ex1I )apply (frule-ta asynCompositionValid)apply (larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (drule-ta set-aggr-�lter .element-somewhere-in-list)apply (erule-ta exE )apply (rule-ta x = i in exI ) 101



A Appendixapply simpapply (drule-ta bool-and-map.everyA)apply (rename-ta ql1 y ql2 i)apply (subgoal-ta (ql1 ! i , Inl ! i , Outl ! i , ql2 ! i , L ! i) ∈set (zip ql1 (zip Inl (zip Outl (zip ql2 L)))))apply (erule-ta x = (ql1 ! i , Inl ! i , Outl ! i , ql2 ! i , L ! i) in ballE-in)apply (simp add : split-def )apply (ase-ta Inl ! i = {}, fore)apply simpapply (erule onjE )+apply (fold step-def )apply (drule-ta step-respets-signature(2 ))apply foreapply (subst in-set-onv-nth)apply (rule-ta x = i in exI )apply foreby (rule-ta L = L and I = {inp} and i = x and j = yin mathFSMList-shared-same-index , fore+)lemma set-aggr-�lter .empty-repliate [simp]: set-aggr-�lter F (repliate len {}) = {}by (indut len, simp+)lemma set-aggr-�lter .gobble-empty-repliate [simp,rule-format ]:i < len −→ set-aggr-�lter F (repliate len {}[i := L]) = set-aggr-�lter F [L]Aggregating arbitrary amounts of empty sets does not make any di�erene.by (rule proofHole[of ?thesis])lemma omposite-ations.fold :assumes mathFSMList Lshows (
⋃A ∈ set L. input (ations A)) − (

⋃A ∈ set L. output (ations A)) =input (ations (asynComposition L))and (
⋃A ∈ set L. output (ations A)) − (

⋃A ∈ set L. input (ations A)) =output (ations (asynComposition L))and (
⋃A ∈ set L. inner (ations A)) ∪ ((

⋃A ∈ set L. input (ations A)) ∩
(
⋃A ∈ set L. output (ations A))) = inner (ations (asynComposition L))apply sueedapply (insert 〈mathFSMList L〉)apply (frule asynCompositionValid)apply (larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (subst input-aess, rule mathFSMList-produes-atsig , assumption)apply (rule re�)apply (insert 〈mathFSMList L〉)apply (frule asynCompositionValid)apply (larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)102



apply (subst output-aess, rule mathFSMList-produes-atsig , assumption)apply (rule re�)apply (insert 〈mathFSMList L〉)apply (frule asynCompositionValid)apply (larsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)apply (subst inner-aess, rule mathFSMList-produes-atsig , assumption)by (rule re�)lemma omposite-statespae.fold :assumes mathFSMList Lshows (list-times-ompr L (λA. states A) ×powermultiset ((
⋃A∈set L. inner (ations A)) ∪ (

⋃A∈set L. input (ations A)) ∩
(
⋃A∈set L. output (ations A)))) =states (asynComposition L)apply (insert 〈mathFSMList L〉)apply (frule asynCompositionValid)by (bestsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def asynCompositionValid)lemma step-respets-statespae [rule-format ]:shows step A q1 In Out q2 −→ q1 ∈ states Aand step A q1 In Out q2 −→ q2 ∈ states Aapply sueedapply (rule asynfsm.unfold)apply (larsimp simp: step-def steps-aess ations-aess)apply (unfold asynfsm-def , larsimp)apply (erule-ta x = (q1, In, Out , q2) in ballE-in, assumption, blast)apply (rule asynfsm.unfold)apply (larsimp simp: step-def steps-aess ations-aess)apply (unfold asynfsm-def , larsimp)by (erule-ta x = (q1, In, Out , q2) in ballE-in, assumption, blast)lemma list-times-ompr .arbitrary-merging-update [intro,rule-format ]:

[[length L1 = length L2; length L2 = length L3; i < length L1; L1 ∈ list-times-ompr L3 f ;L2 ∈ list-times-ompr L3 f ]] =⇒L1[i := L2 ! i ] ∈ list-times-ompr L3 fConsider a ross-produt of length n of a list of sets. Now onsider two tuples t and s out ofthis ross-produt. Clearly swithing some omponents between s and t will still lead to tupleswithin the ross-produt.by (rule proofHole[of ?thesis])lemma powermultiset-inludes-subset :
[[A ∈ powermultiset S ; B ⊆# A]] =⇒ B ∈ powermultiset Sapply (simp add : powermultiset-def )apply (unfold set-of-def ) 103



A Appendixapply (subgoal-ta ∀ x . x ∈# B −→ x ∈ S , blast)apply (subgoal-ta ∀ x . x ∈# A −→ x ∈ S )prefer 2 apply blastapply (rule allI )apply (erule-ta x = x in allE )apply larsimpapply (subgoal-ta x ∈# A)apply blastapply (drule-ta x = x and A = B and B = A in mset-leD , assumption)by simplemma powermultiset-keeps-subset : [[A ⊆ B ]] =⇒ powermultiset A ⊆ powermultiset Bapply (simp add : powermultiset-def )apply (unfold set-of-def )by blastlemma powermultiset-ontains-multiset-of :
[[A ⊆ B ]] =⇒ Drah�owTools.multiset-of A ∈ powermultiset BCompletely parallel to powersets.by (rule proofHole[of ?thesis])lemma powermultiset-two-elements-implies-union:
[[A ∈ powermultiset S ; B ∈ powermultiset S ]] =⇒ A + B ∈ powermultiset SCompletely parallel to powersets.by (rule proofHole[of ?thesis])lemma multiset-di�erene-subset-positive: A − S ⊆# Aby (rule proofHole[of ?thesis])lemma on�uene:assumes ompatibleMahines: mathFSMList Land serialMahines: ∀A ∈ set L. serial Aand parallelStep: step (asynComposition L) (ql1, M 1) In Out (ql3, M 3)and singleAtion: i ∈ Inshows
∃Outi ql2 M 2. step (asynComposition L) (ql1, M 1) {i} Outi (ql2, M 2) ∧
(In = {i} ∨ step (asynComposition L) (ql2, M 2) (In − {i}) (Out − Outi) (ql3, M 3))proof −from ompatibleMahines have validComposition: asynCompositionRaw L ∈ asynfsmby (rule asynCompositionValid)from parallelStep and ompatibleMahines and serialMahineshave �niteAtions: �nite In by blastfrom parallelStep and validComposition104



obtain Inl and Outl wherelet inputs = ((
⋃A ∈ set L. input (ations A)) − (

⋃A ∈ set L. output (ations A))) inlet outputs = ((
⋃A ∈ set L. output (ations A)) − (

⋃A ∈ set L. input (ations A))) inlet inners = ((
⋃A ∈ set L. inner (ations A)) ∪

(
⋃A ∈ set L. input (ations A) ∩ (

⋃A ∈ set L. output (ations A)))) inlet Q = ((list-times-ompr L (λA. states A)) × (powermultiset inners)) in
( bool-and-map (λ(qi1, ini , outi , qi3, Ai).

((step Ai qi1 ini outi qi3 ∧ multiset-of (ini ∩ input (ations Ai) ∩ inners) ⊆# M 1) ∨
(ini = {} ∧ outi = {} ∧ qi1 = qi3)))

(zip ql1 (zip Inl (zip Outl (zip ql3 L)))) ∧In = set-aggr-�lter (inputs ∪ inners) Inl ∧ In 6= {} ∧ Out = set-aggr-�lter outputs Outl ∧M 3 = (M 1 − multiset-of In) + multiset-of (set-aggr-�lter inners Outl) ∧
(ql1, M 1) ∈ Q ∧ (ql3, M 3) ∈ Q ∧ length ql1 = length L ∧ length Inl = length L ∧length Outl = length L ∧ length ql3 = length L

)by (bestsimp simp: step-def asynComposition-def asynCompositionRaw-defLet-def meta-allE [where x = Inl ] meta-allE [where x = Outl ])note onditionsOnInlAndOutl = thisdef Outi-def : Outi ≡ Outl ! soure-mahine L idef inners-def : inners ≡ inner (ations (asynComposition L))show ?thesisproof (rule-ta x = Outi in exI ,rule-ta x = ql1[soure-mahine L i := ql3 ! soure-mahine L i ] in exI ,rule-ta x = M 1 − multiset-of {i} + multiset-of (inners ∩ Outi) in exI ,rule onjI )from validCompositionshow step (asynComposition L) (ql1, M 1) {i} Outi
(ql1[soure-mahine L i := ql3 ! soure-mahine L i ], M 1 −Drah�owTools.multiset-of {i} + Drah�owTools.multiset-of (inners ∩ Outi))proof (larsimp simp: step-def asynComposition-def asynCompositionRaw-def Let-def ,rule-ta x = repliate (length L) {} [soure-mahine L i := {i}] in exI ,rule-ta x = repliate (length L) {} [soure-mahine L i := Outi ] in exI )let ?ond1 = bool-and-map (λ(qi1, ini , outi , qi2, Ai). (qi1, ini , outi , qi2) ∈ steps Ai ∧Drah�owTools.multiset-of (ini ∩ input (ations Ai) ∩

((
⋃A∈set L. inner (ations A)) ∪ (

⋃A∈set L. input (ations A)) ∩
(
⋃A∈set L. output (ations A)))) ⊆# M 1

∨ ini = {} ∧ outi = {} ∧ qi1 = qi2)
(zip ql1 (zip (repliate (length L) {}[soure-mahine L i := {i}])

(zip (repliate (length L) {}[soure-mahine L i := Outi ])
(zip (ql1[soure-mahine L i := ql3 ! soure-mahine L i ]) L))))let ?ond2 = {i} = set-aggr-�lter ((

⋃A∈set L. input (ations A)) −
(
⋃A∈set L. output (ations A)) ∪ ((

⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A))))
(repliate (length L) {}[soure-mahine L i := {i}]) 105



A Appendixlet ?ond3 =Outi = set-aggr-�lter ((
⋃A∈set L. output (ations A)) − (

⋃A∈set L. input (ations A)))
(repliate (length L) {}[soure-mahine L i := Outi ])let ?ond4 = Drah�owTools.multiset-of (inners ∩ Outi) =Drah�owTools.multiset-of (set-aggr-�lter

((
⋃A∈set L. inner (ations A)) ∪ (

⋃A∈set L. input (ations A)) ∩
(
⋃A∈set L. output (ations A)))

(repliate (length L) {}[soure-mahine L i := Outi ]))let ?ond5a = ql1 ∈ list-times-ompr L stateslet ?ond5b = M 1 ∈ powermultiset ((
⋃A∈set L. inner (ations A)) ∪

(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))let ?ond6a =ql1[soure-mahine L i := ql3 ! soure-mahine L i ] ∈ list-times-ompr L stateslet ?ond6b =M 1 − Drah�owTools.multiset-of {i} + Drah�owTools.multiset-of (inners ∩ Outi)
∈ powermultiset ((

⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))let ?ond7 =length ql1 = length L ∧length (repliate (length L) {}[soure-mahine L i := {i}]) = length L ∧length (repliate (length L) {}[soure-mahine L i := Outi ]) = length L ∧length ql1 = length Lfrom ompatibleMahines serialMahines parallelStep and singleAtionhave ?ond2apply (subst set-aggr-�lter .gobble-empty-repliate, rule soure-mahine-length)apply (simp add : set-aggr-�lter-def )apply (subst omposite-ations.fold , assumption)+apply (frule step-respets-signature(2 ))by blastmoreoverfrom ompatibleMahines serialMahines parallelStep and singleAtionhave ?ond3apply (subst set-aggr-�lter .gobble-empty-repliate, rule soure-mahine-length)apply (simp add : set-aggr-�lter-def )apply (subst omposite-ations.fold , assumption)+apply (frule step-respets-signature(2 ))apply (unfold Outi-def )Clearly the soure mahine will only have emitted valid outputs.by (rule proofHole[of Outl ! soure-mahine L i =Outl ! soure-mahine L i ∩ output (ations (asynComposition L))])moreover
106



from ompatibleMahines serialMahines parallelStep and singleAtionhave ?ond4apply (subst set-aggr-�lter .gobble-empty-repliate, rule soure-mahine-length)apply (simp add : set-aggr-�lter-def )apply (subst omposite-ations.fold , assumption)+apply (unfold inners-def )apply (rule-ta f = multiset-of in eq-ong-fun-app)by blastmoreoverfrom ompatibleMahines and parallelStephave ?ond5a ∧ ?ond5bapply (insert ompatibleMahines)apply (insert parallelStep)apply (drule step-respets-statespae)apply (subgoal-ta (ql1, M 1) ∈ list-times-ompr L states ×powermultiset ((
⋃A∈set L. inner (ations A)) ∪

(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A))))apply blastby (subst omposite-statespae.fold , assumption+)moreoverfrom onditionsOnInlAndOutl have ?ond7 by (simp add : Let-def )moreoverhave ?ond6a ∧ ?ond6bproof (rule onjI )show ql1[soure-mahine L i := ql3 ! soure-mahine L i ] ∈ list-times-ompr L statesapply (insert onditionsOnInlAndOutl , simp add : Let-def )apply (rule list-times-ompr .arbitrary-merging-update, simp, simp)proof −from ompatibleMahines serialMahines parallelStep singleAtionhave soure-mahine L i < length L by (rule soure-mahine-length)moreoverhave length ql1 = length L by (insert onditionsOnInlAndOutl , simp add : Let-def )ultimatelyshow soure-mahine L i < length ql1 by simpshow ql1 ∈ list-times-ompr L statesby (insert onditionsOnInlAndOutl , simp add : Let-def )show ql3 ∈ list-times-ompr L statesby (insert onditionsOnInlAndOutl , simp add : Let-def )qed
107



A Appendixfrom onditionsOnInlAndOutlhave M 1IsCorret : M 1 ∈ powermultiset ((
⋃A∈set L. inner (ations A)) ∪

(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))by (simp add : Let-def )moreoverfrom ompatibleMahineshave newOutputIsCorret : Drah�owTools.multiset-of (inners ∩ Outi)
∈ powermultiset ((

⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))apply (subst omposite-ations.fold , assumption)+apply (unfold inners-def )by (blast intro: powermultiset-ontains-multiset-of )ultimatelyshow M 1 − Drah�owTools.multiset-of {i} +Drah�owTools.multiset-of (inners ∩ Outi) ∈ powermultiset
((

⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))apply (unfold inners-def )proof (rule powermultiset-two-elements-implies-union)show M 1 − Drah�owTools.multiset-of {i} ∈ powermultiset
((

⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))using M 1IsCorretproof (rule powermultiset-inludes-subset)show M 1 − Drah�owTools.multiset-of {i} ⊆# M 1by (rule multiset-di�erene-subset-positive)qedshow Drah�owTools.multiset-of (inner (ations (asynComposition L)) ∩ Outi) ∈powermultiset ((
⋃A∈set L. inner (ations A)) ∪

(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))by (insert newOutputIsCorret , unfold inners-def , simp)qedqedmoreoverhave ?ond1proof (rule bool-and-map.everyR, subst set-zip, rule ballI , fold step-def ,larsimp, rename-ta iPos)�x iPosshowstep (L ! iPos) (ql1 ! iPos) (repliate (length L) {}[soure-mahine L i := {i}] ! iPos)
(repliate (length L) {}[soure-mahine L i := Outi ] ! iPos)108



(ql1[soure-mahine L i := ql3 ! soure-mahine L i ] ! iPos) ∧Drah�owTools.multiset-of
(repliate (length L) {}[soure-mahine L i := {i}] ! iPos ∩input (ations (L ! iPos)) ∩
((

⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))) ⊆# M 1proof (ases iPos = soure-mahine L i)ase Trueshow ?thesisapply (insert 〈iPos = soure-mahine L i 〉, insert onditionsOnInlAndOutl)apply (larsimp simp: Let-def )apply (drule-ta list-times-ompr-same-length)+apply (insert soure-mahine-length[of L (ql1, M 1) In Out (ql3, M 3) i ])apply (simp add : ompatibleMahines serialMahines parallelStep singleAtion)apply (unfold Outi-def )apply (drule-ta bool-and-map.everyA)apply (erule-ta x = (ql1 ! soure-mahine L i , {i}, Outl ! soure-mahine L i ,ql3 ! soure-mahine L i , L ! soure-mahine L i) in ballE-in)apply (insert soure-mahine-length[of L (ql1, M 1) In Out (ql3, M 3) i ])apply (simp add : ompatibleMahines serialMahines parallelStep singleAtion)apply (unfold set-zip)apply larsimpapply (rule-ta x = soure-mahine L i in exI , larsimp)apply (insert singleAtion onditionsOnInlAndOutl)apply (larsimp simp: Let-def )apply (drule bool-and-map.everyA)apply (rule diretContradition)apply (insert soure-mahine-input [of L (ql1, M 1) In Out (ql3, M 3) i ])apply (simp add : ompatibleMahines serialMahines parallelStep singleAtion)From {i} 6= Inl ! soure-mahine L i and i ∈ input (ations (L ! soure-mahine L i)) ∨i ∈ inner (ations (L ! soure-mahine L i)) follows a ontradition.apply (rule proofHole[of False])apply (insert soure-mahine-length[of L (ql1, M 1) In Out (ql3, M 3) i ])by (simp add : ompatibleMahines serialMahines parallelStep singleAtion)nextase Falseshow ?thesisThis ase an never our, as all input and inner signatures are disjunt.by (rule proofHole[of ?thesis])qedqed 109



A Appendixultimatelyshow ?ond1 ∧ ?ond2 ∧ ?ond3 ∧ ?ond4 ∧ ?ond5a ∧ ?ond5b ∧?ond6a ∧ ?ond6b ∧ ?ond7by blastqednextshow In = {i} ∨ step (asynComposition L)
(ql1[soure-mahine L i := ql3 ! soure-mahine L i ],M 1 − Drah�owTools.multiset-of {i} + Drah�owTools.multiset-of (inners ∩ Outi))
(In − {i}) (Out − Outi) (ql3, M 3)proof (ases In = {i})ase True thus ?thesis by blastnextase Falsewith validCompositionshow ?thesisproof (larsimp simp: step-def asynComposition-def asynCompositionRaw-def Let-def ,rule-ta x = Inl [soure-mahine L i := {}] in exI ,rule-ta x = Outl [soure-mahine L i := {}] in exI )let ?ond1 = bool-and-map (λ(qi1, ini , outi , qi2, Ai). (qi1, ini , outi , qi2) ∈ steps Ai ∧Drah�owTools.multiset-of (ini ∩ input (ations Ai) ∩

((
⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A))))
⊆# M 1 − Drah�owTools.multiset-of {i} +Drah�owTools.multiset-of (inners ∩ Outi) ∨ini = {} ∧ outi = {} ∧ qi1 = qi2)

(zip (ql1[soure-mahine L i := ql3 ! soure-mahine L i ])
(zip (Inl [soure-mahine L i := {}]) (zip (Outl [soure-mahine L i := {}])

(zip ql3 L))))let ?ond2 = In − {i} = set-aggr-�lter ((
⋃A∈set L. input (ations A)) −

(
⋃A∈set L. output (ations A)) ∪
((

⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A))))
(Inl [soure-mahine L i := {}])let ?ond3 = ¬ In ⊆ {i}let ?ond4 = Out − Outi = set-aggr-�lter ((

⋃A∈set L. output (ations A)) −
(
⋃A∈set L. input (ations A)))

(Outl [soure-mahine L i := {}])let ?ond5 = M 3 = M 1 − Drah�owTools.multiset-of {i} +Drah�owTools.multiset-of (inners ∩ Outi) −Drah�owTools.multiset-of (In − {i}) + Drah�owTools.multiset-of
(set-aggr-�lter

((
⋃A∈set L. inner (ations A)) ∪

(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))
(Outl [soure-mahine L i := {}]))110



let ?ond6a = ql1[soure-mahine L i := ql3 ! soure-mahine L i ] ∈list-times-ompr L stateslet ?ond6b = M 1 − Drah�owTools.multiset-of {i} +Drah�owTools.multiset-of (inners ∩ Outi) ∈ powermultiset
((

⋃A∈set L. inner (ations A)) ∪
(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))let ?ond7a = ql3 ∈ list-times-ompr L stateslet ?ond7b = M 3 ∈ powermultiset ((
⋃A∈set L. inner (ations A)) ∪

(
⋃A∈set L. input (ations A)) ∩ (

⋃A∈set L. output (ations A)))let ?ond8 = length ql1 = length L ∧ length (Inl [soure-mahine L i := {}]) = length L ∧length (Outl [soure-mahine L i := {}]) = length L ∧length ql3 = length LIn priniple parallel to the above proof about the single element.have ?ond1 by (rule proofHole[of ?thesis])moreoverhave ?ond2 by (rule proofHole[of ?thesis])moreoverhave ?ond3 by (rule proofHole[of ?thesis])moreoverhave ?ond4 by (rule proofHole[of ?thesis])moreoverhave ?ond5 by (rule proofHole[of ?thesis])moreoverhave ?ond6a ∧ ?ond6b by (rule proofHole[of ?thesis])moreoverhave ?ond7a ∧ ?ond7b by (rule proofHole[of ?thesis])moreoverhave ?ond8 by (rule proofHole[of ?thesis])ultimatelyshow ?ond1 ∧ ?ond2 ∧ ?ond3 ∧ ?ond4 ∧ ?ond5 ∧ ?ond6a ∧ ?ond6b ∧?ond7a ∧ ?ond7b ∧ ?ond8by blastqedqedqedqedlemma on�uene-orollary :
[[mathFSMList L;

∧x . x ∈ set L =⇒ serial x ; P q1;
∧q1 i Out q2. [[P q1;

∧Out q2. step (asynComposition L) q1 {i} Out q2]] =⇒ P q2]]
=⇒ step (asynComposition L) q1 In Out q2 −→ P q2Via indution over the set In, taking one ation out at a time always arrying along P.by (rule proofHole[of ?thesis])
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A Appendixindutive-set reahable :: ( ′q , ′at)asynfsm ⇒ ′q set for A :: ( ′q , ′at)asynfsmwhere initial A ∈ reahable Aand [[q ∈ reahable A; ∃ In Out . step A q In Out q ′]] =⇒ q ′ ∈ reahable Alemma on�uene-invariant :
[[mathFSMList L;

∧x . x ∈ set L =⇒ serial x ; q ∈ reahable (asynComposition L);P (initial (asynComposition L));
∧q1 i Out q2. [[P q1; step (asynComposition L) q1 {i} Out q2]] =⇒ P q2]]

=⇒ P qapply (erule-ta reahable.indut , assumption)apply (erule-ta exE )+by (drule-ta q1 = q and q2 = q ′ and L = L and P = P and In = In and Out = Outin on�uene-orollary , blast+)end
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