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Abstract

In the age of multi-core processors and ubiquitous computing, more tasks than ever need
to be performed by multiple, spatially disjunct computing facilities in a parallel fash-
ion. The inherent communication delays in such systems make a purely synchronous
approach infeasible. While specifying a system, assuming synchrony makes the design
process simpler. It is not clear however, whether an asynchronous system can implement
a synchronous specification faithfully. The present thesis gives a constructive proof that
an implementation exists which is behaviourally equivalent to the specification up to a
suitable linear-time equivalence. Both specification and implementation are given in Petri
nets, a model well suited to describe parallelism and distribution of a system.
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1 Introduction

In today’s computing world, performance depends more than ever on parallelism. As more
and more systems consist of multiple processing units, software can no longer execute in a
straight serial one-step-after-the-next manner if the full potential of a system needs to be
realised. Rather, software must try to take as many steps in parallel as possible. While
doing so, it must still behave correctly, a feat even serial software often fails to perform.
Additional complexities for the parallel case emerge from an enlarged state-space and
reduced debuggability due to non-determinism of scheduling.

To guide the creation of new and correct software which makes maximal use of the novel
parallel technologies, mathematical models are used. These models abstract from some
apparently less important aspects of the system to show particular properties about the
remaining aspects. One often ignored aspect is time, in particular the duration of actions
and computations. The ultimately implemented system however will be embedded in a
universe which changes over time. As always when modelling, observations about the
abstract model carry over into the real world only where the assumptions underlying the
abstraction are valid.

There are a multitude of possibilities to abstract time based changes of the real world
in a timeless model. Choosing the right abstraction for the system in question can be
crucial. If too fine an abstraction is chosen, theoretical validation of the software might
be infeasible, if the abstraction is too broad, the theoretically proven correctness wrt. the
broad abstraction might not carry over into the real world.

To compare two different ways to abstract time, consider the example robot in Figure 1.1.
It needs to enter one of the two corridors to reach its goal, a barrel of machine oil.
Unfortunately, both corridors have a door, one of which will be closed. To avoid crashing
into closed doors, the robot will first probe the state of the two doors before attempting
to move. Drawing a diagram of the robot’s mind, one might arrive at something akin
to Figure 1.2. After the probing action, the robot might decide either for the left or
the right door. This model however neglects the fact that the robot first decides and
then moves. Making this distinction between thinking and movement explicit leads to
Figure 1.3. Whether these two descriptions of the robot’s mind are equivalent or not
depends on which abstraction one chooses.

If one considers a world which might change arbitrarily fast, in particular faster than
the robot thinks, the first model describes a robot which retains both movement options
until movement has been executed, whereas the second model suggests that the robot first
thinks for a while and then decides for one movement option. If the doors switched status
between that decision and the attempted movement, the robot might deadlock, futilely
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Figure 1.1: A robot wants to reach an oil barrel, yet some doors block its way
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Figure 1.2: The mind of a non-thinking robot
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Figure 1.3: The mind of a robot which thinks for a short time

attempting to execute a now impossible movement action. Assuming a sufficiently smart
robot, this difference in the outcome is only possible if the doors move faster than the robot
thinks. Clearly, assuming an infinitely fast changing world is a very robust assumption.
If a system can operate successfully under that assumption, it can surely operate in the
real universe.

Conversely, assuming a static world sidesteps the issue of how to abstract the timing
of changes therein. Under that assumption, the two models of the robot’s behaviour
would be considered equivalent. While such an assumption is clearly not as robust as
the earlier one, today’s highly integrated circuits allow the construction of robots which
think substantially faster than the usual door moves. Validation of a system under the
assumption that the world is static is meaningful if the computer is fast in comparison to
the system it controls.

Between these two extreme assumptions, one can create a whole spectrum of different
shades of time abstraction, giving rise to a spectrum of equivalence relations between
behaviours. This so called linear-time branching-time spectrum has been described ex-
tensively in [4] and [6]. The frontier between linear-time and branching-time is naturally
a grey area. Nonetheless, the assumption of an infinitely fast changing world corresponds
to branching-time equivalences, whereas a static world assumption underlies linear-time
equivalences.

The choice between different behavioural equivalences becomes even more complicated
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Figure 1.4: A synchronous specification and a partitioning into locations

in the light of parallelism, which is often necessary to build performant systems. One
possibility is to remove parallelism by substituting it with all possible interleavings of the
parallel actions, another is to allow all possible interleavings but retain a possible parallel
step, yet another is to model all causal dependencies explicitly as done in pomset-trace
semantics [20].

This thesis is concerned with distributed system, that is systems which perform activities
within multiple (usually spatially) distributed locations in a coordinated fashion. Compu-
tations within different locations can naturally proceed in parallel unless they need access
to shared resources. Access to these resources is often the main problem in such systems,
complicated by the fact that the different locations cannot communicate instantaneously,
but each message between locations must travel some distance before reaching its desti-
nation, which takes time. As no synchronous communication primitives are available such
a system is called asynchronous.

Nonetheless, it is often easier to design a system as if synchronous communication were
possible. The question then is: Given a synchronous specification of a system, can it
be implemented in a distributed and hence asynchronous way? Compare Figure 1.4. A
system has been specified using the synchronous model of Petri nets [19]. It has two shared
resources at the top, and may either perform the actions a and ¢ in parallel, consuming the
left and right resource respectively, or it may perform b while consuming both resources
at once. The elements of the system have been assigned to different locations however
and can only communicate asynchronously. Is there any protocol the locations can follow
in order to fulfil the synchronous specification?

The answer to that question is not a binary one. Various protocols might exist, depending
on what exactly it means to “fulfil the synchronous specification”, i.e. which behavioural
equivalence one uses to compare synchronous specification and distributed implementa-
tion. While it was known [7] that no protocol can exist for most branching-time equiva-
lences, as outlined in Section 4, the question was open for linear-time equivalences.



The present thesis aims to show that, given a synchronous specification of a parallel
system, a distributed implementation of this specification exists, under the assumptions
that

— the environment must be slow in comparison to the implementation, i.e. the imple-
mentation is only correct up to linear-time equivalences, and

— the implementation may from time to time decide to perform steps in sequence
which were parallel in the specification.

This implementation may not always be useful in the real world. If the hardware used
to implement the distributed system is too slow, the real world will change faster than
the system can cope with. It is my personal conjecture that a final answer about what
is distributable in the real world will only be reachable by taking time fully into account.
However that is out of the scope of this thesis.

The second assumption is related to the chosen concept of parallelism. This thesis assumes
that whenever a system can perform two steps in parallel, these steps may also occur in
sequence, which is not an unusual assumption. There is a deviation from the usual
intuition however, which weens that the interleaving of events is elicited by imperfections
in timing. The systems in this thesis however will decide to perform steps in explicit
sequence. Some more details on this deviation are given in Section 6.

Apart from the problems about time-abstraction and parallelism considered above, there
is one other problem in distributed systems which this thesis covers. Different communi-
cations between different locations in a distributed systems might proceed with different
speeds. This can lead to a phenomenon called message overtaking, where messages are
received in a different sequence than they were sent. This thesis makes no assumptions
about properties of message overtaking at all, i.e. all forms of message overtaking are
allowed.

Other problems, like content encoding within messages and error detection and recovery
will be abstracted away as far as possible. Abstract interactions between parallel compo-
nents are considered instead. To model these interactions and parallel components, Petri
nets will be used, which allow a very intuitive and direct definition of distributability.
This notion of distributability will also guarantee that no synchronous communication
between different distributed components can happen.

Furthermore, as the main Petri net construction in this thesis is rather lengthy, finite
state machines with a non-standard parallel combining operator will be employed as an
abbreviation for a certain class of Petri nets, thus shortening the construction and the
proofs.

Having now cleared up the scope of the thesis, a short overview of the contents should be
next. Both Petri nets and the formal model based on state machines will be introduced in
Section 2 first and then extended to a distributed setting in Section 3. Section 4 will give
intuition and a short technical explanation on why certain behaviours have no distributed
implementation under branching-time semantics. The main results of this thesis will be
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given in Section 5, where a constructive proof for a distributed implementation of Petri
nets will be given. Finally Section 6 will give a conclusion and literature overview.

Proofs in the earlier chapters will only be sketched in the main text, as the results are not
terribly deep and formal proofs for the Isabelle/HOL tool [17] have been created for most
of them and are available in the appendix. I originally envisioned using Isabelle/HOL for
the complete thesis, but abandoned that attempt after it became clear that I would not
be able to complete the formal proofs within the given time frame. A short summary of
the main problems encountered while working with Isabelle/HOL is given in Section 6 as
well.



2 Basic Notions

As this thesis uses multisets and the notation for these is not quite standardised yet, the
local version of it is given here.

Definition 2.1.1
A multiset M is a function which maps to natural numbers together with its domain.
The domain will always stay implicit in this thesis.

An object e is an element of the multiset, e € M, iff M(e) > 0.

The union of two multisets, M + N, is the pointwise addition, i.e. the multiset such
that (M + N)(e) = M(e) + N(e). Similarly, the difference of two multisets, M — N,
is the multiset such that (M — N)(e) = max(M(e) — N(e),0). A multiset M is a
submultiset of another multiset N, M < N, iff Vo € M. M(z) < N(x).

A set S can be understood within the domain of multisets by mapping all its elements
tol,ie. S(e)=1<ecSAS(e)=0<e¢S.

The powermultiset of a set S, M(S), is the set containing all multisets which only
contain elements of S.

Also, the notation P(S) will be used to denote the powerset of a set S.

The following paragraphs about Petri nets are taken from [7], where this model has
already been proven effective to describe phenomena in asynchronous systems. The main
difference is that the present thesis allows transitions to carry more than one visible action.
The power of this additional possibility however is only used for intermediate construction
steps, and the main results hold also for nets where this is not allowed.

Definition 2.1.2
Let Act be a set of visible actions.

A labelled net N (over Act) is a tuple (SN, TN, FN MY, (V) where

— SN is a set (of places),
— TV is a set (of transitions),
~ FNC SN x TN UTN x SN (the flow relation),
— MY C SN (the initial marking), and
— (N TN — P(Act) (the labelling function).
Petri nets are depicted by drawing the places as circles, the transitions as boxes containing

the respective label, and the flow relation as arrows (arcs) between them. When a Petri
net represents a concurrent system, a global state of such a system is given as a marking,
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a set of places, the initial state being M. A marking is depicted by placing a dot (token)
in each of its places. The dynamic behaviour of the represented system is defined by
describing the possible moves between markings. A marking M may evolve into a marking
M’ when a nonempty set of transitions G fires. In that case, for each arc (s,t) € FV
leading to a transition ¢t in GG, a token moves along that arc from s to t. Naturally, this
can happen only if all these tokens are available in M in the first place. These tokens are
consumed by the firing, but also new tokens are created, namely one for every outgoing
arc of a transition in G. These end up in the places at the end of those arcs. A problem
occurs when as a result of firing G multiple tokens end up in the same place. In that case
M'" would not be a marking as defined above. This thesis only considers nets in which
this never happens. Such nets are called 7-safe. Unfortunately, in order to formally define
this class of nets, the firing rule must first be given without assuming 1-safety. Below this
is done by forbidding the firing of sets of transitions when this might put multiple tokens
in the same place.

Definition 2.1.3
Let N = (SN, TN, FN MY, (") be a labelled net. Let M, M’ C SV. The preset
and postset of a net element z € S UT are denoted by *x := {y | (y,x) € F'} and
z* = {y | (x,y) € F'} respectively. These functions are extended to sets in the usual
manner, i.e. *X :={y |y € *z,z € X}.

A nonempty set of transitions G C TV, G # 0, is called a step from M to M’ notation
M [G)y M, iff

— all transitions contained in G are enabled, that is
VEe G tCMAM\t)Nnt* =0,
— all transitions of G are independent, that is not conflicting:
Viue Git#£u. tN®u=0At"Nu* =0 ,and

— in M’ all tokens have been removed from the preplaces of G and new tokens have
been inserted at the postplaces of G:

M =(M\*G)UG" .

To simplify statements about possible behaviours of nets, the following definition intro-
duces some abbreviations.

Definition 2.1.4
Let N = (SN, TN, FN MY, ¢N) be a labelled net. The labelling function ¢ shall be
expanded to sets by forming the multiset union of the results, i.e. ¢V (G) = ¥ ,cq £V (1).

— —y CP(S) xM(Act) x P(S) is given by M —5 5 M’ < 3GCTN M [G)ny M’ A
A=1%(G)#0



— Sy CP(S) x P(9) is defined by M 5y M' < e T. N(1t)=0A
M [{thn M’
— =N CP(5) x M(Act)* x P(S) is defined by

A1As--A A A A
M ==== NM/@M—>T *N—>1NHT7VH2N"'—>RNHT*NM/

where —=% denotes the reflexive and transitive closure of — .

The following uses M —2y for IM'. M 255 M', M x5 M for 2M'. M 25 M,
and similar for the other two relations. Likewise M [G)y abbreviates IM'. M [G)y M.

A marking M is said to be reachable iff there is a 0 € M(Act)* such that M) ==y M.
The set of all reachable markings is denoted by [MZ).

As stated before, only 1-safe nets are considered here. Formally, the restriction only allows
contact-free nets, where in every reachable marking M € [M{Y) for all t € T' with *t C M

(M\*t)nt* =10 .

For such nets, Definition 2.1.3 could just as well consider a transition ¢ to be enabled in
M iff *t C M, and two transitions to be independent when *t N *u = ().

Furthermore two additional restrictions are imposed. Namely that S™ and T% are finite.
Henceforth, net shall refer to a labelled net obeying the above restrictions.

In nets as just defined transitions are labelled with sets of actions drawn from a set Act.
This makes it possible to see these nets as models of reactive systems, that interact with
their environment. The firing of a transition ¢ corresponds to the execution of the actions
¢N(t) by the system. If ¢V (t) # (), this firing can be observed, but if /¥ (¢) = (), ¢ is an
internal or silent transition whose firing cannot be observed by the environment. These
transitions have traditionally carried the label 7 instead of (), and this convention will also
be used in this thesis most of the time.

In the following the term plain nets denotes nets where ¢V is injective and maps only
to singletons, i.e. essentially unlabelled nets. Similarly, the term plain 7-nets describes
nets where ¢~ maps to singletons or 7 and ¢~ (t) = ¢V (u) # 7 = t = u. This basically
describes nets where every observable action is produced by a unique transition.

The present thesis focuses mainly on implementations of plain nets, as many of the sub-
tleties of varying equivalence notions can thus be avoided without negatively affecting the
results about asynchrony.

Some of the constructions in this thesis will lead to very large nets. Since giving them
directly in Petri net notation would certainly not lead to a better understanding of the
ideas guiding them, these constructions will work instead by constructing nets out of
communicating finite state machines (FSMs). Since finite state machines and finite state
automata are the same thing, these two terms will be used synonymously.
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Definition 2.1.5
An action signature X is a tuple (3, X0, X,) where
— Xy is a set (of input actions),
— Yo is a set (of output actions),
— X, is a set (of internal actions), and
— X1, 2o and Y, are pairwise disjoint.

In the following, > will also be used to mean >; U ¥p U X,

Definition 2.1.6
A state machine A is a tuple (34, Q4, ¢¢', =), where

— ¥4 is an action signature,
— Q4 is a set (of states),
— gt € Q* (the initial state), and
— =AC QX (PEAUZA N\ {D}) x P(Z5) x Q4 (the transition relation).
Instead of (¢, 1,0, q') € —* the notion ¢ ﬂm ¢" will be used to denote that a specific
step can be performed. The state machine A is finite, iff Q4 is. A state ¢ € Q4 is
reachable iff a chain of steps qOA ﬂmb;—O%A e I";—O">A q exists.
This definition allows systems of multiple concurrent state machines to be described as
a state machine again. At the same time it allows such composed systems to perform
actions in parallel, one of the main features of a truly distributed system. These features
will be used in the definition of a parallel composition operator on state machines in
Section 3.

Most FSMs constructed later will have the nice property of only performing one input
action at a time, giving rise to the following definition.

Definition 2.1.7
A state machine A is called serial iff ¢ 2%, ¢ = || =1.

As the names of states of a state machine do not influence the observable behaviour of a
state machine at all, it is advantageous to consider two state machines which only differ
in these names as equivalent. This notion of equivalence is formalised as follows.

Definition 2.1.8
Let A and A’ be two state machines.

A and A are isomorphic, A ~ A', if and only if ¥4 = 34" and there exists a bijection
¢ : Q* — Q* such that

S8 =8
¢ =>4 & oq) =S o(d) .

10



3 Distributed Systems

As already noted, many of today’s computer systems are distributed. To further analyse
these systems formally, the essential aspects of distributed systems need to be singled out
and converted into mathematical properties. Obviously not all of the properties should
be handled in that way, otherwise the mathematical models will become convoluted and
not any simpler than the original systems. Thus the formal models will be abstractions
of the real systems concentrating on those aspects which seem relevant.

The formal models in this thesis will in particular ignore the possibility of hardware
failures, the actual computations executed at the different locations, any knowledge about
durations both of computations and of communication and any physical properties of the
involved nodes like dimensions or thermal properties.

Instead the models concentrate on the possibility of parallel actions, the asynchrony of
all communication between nodes and on the control flow within each of the nodes. In
particular they also include the possibility of message overtaking, i.e. that two messages
are received in a different order than they were sent. This phenomenon occurs not in all
distributed systems, but is for example existent in the internet.

In the following, the two system models introduced in Section 2 will be extended to a
distributed setting. First, nets will be equipped with a notion of locations and distribution
in a pretty straightforward way, providing the intuition to connect the theoretical results
to the problems of the real world. Then a parallel composition operator on state machines
will be defined, producing state machines which are strongly related to distributed nets
but better suited for proofs about complicated systems.

3.1 Distributed Petri Nets

To define a distributed net the easiest — and indeed obvious — way is to assume a set of
locations and to mount each place and transition of the net on some element thereof. The
intuition is that each element is somehow implemented at the specified location. After all
elements have been placed on one location or the other, some arrows will cross location
borders. It is along these arrows that the different locations communicate. An example
of a net with such location information attached can be found in Figure 3.1.

A significant communication delay between locations is assumed, which can be represented
explicitly by introducing 7-labelled transitions along arrows crossing location borders, as
done in Figure 3.2. Note that due to this communication delay between the “start drive”

11
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Figure 3.1: An example of a located net, modelling an example robot
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Figure 3.2: A located net with an explicit representation of communication delay
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3.1 Distributed Petri Nets

transition and its preplace to the right a premature decision is enforced, leading to a
deadlock if the token is sent the wrong way and the user never allows the execution of
the “allow drive” transition. A characterisation of subnets where problems of this kind
are exhibited has been done in [8].

As this thesis wants to show how to implement a net in a distributed manner without
changing its behaviour, making a net distributed should not introduce new deadlocks.
Hence the requirement is imposed that all preplaces of a transition are co-located with
the transition to enable the synchronous removal of tokens. No special requirement is
necessary for connections from transitions to postplaces as all nets considered in this thesis
are 1-safe. Thus the firing of transitions cannot be influenced by the presence of tokens on
the postplaces. Furthermore instantaneous and delayed creation of tokens are equivalent
under nearly all equivalence relations which abstract from 7-moves. Additionally, as a
system is usually distributed to increase performance by using multiple execution units at
the same time, a second requirement is imposed which forces transitions firing in parallel
to reside on different locations.

As long as the two requirements are honoured, a system may be distributed in a variety
of ways. A specific association of transitions and places to locations which fulfils these
requirements is called a valid distribution. Some nets have multiple valid distributions, yet
a single one suffices to make a net distributed, as it could be implemented in a distributed
fashion.

Definition 3.1.1
Let N = (SN, TN, FN MY (") be a net. Let Loc be a set of locations.

The net N is distributed iff there exists a function 2 : SN UTY — Loc such that
—set=Y(s)=2(t) and
- M1 € [Mév> /\M1 [G>N M2 = Vt,u € G,t §£ u. .@(t) §£ .@(U)

One important class of nets which are distributed are those characterized in [22] as nets
of sequential machines. Sequential machines are defined therein as Petri nets with two
different kinds of places. Some places are states of the sequential machine, the others
are communication buffers which the machine reads and writes. As the name already
suggests, sequential machines are only allowed to execute actions in sequence, not in
parallel. This is formalised by partitioning the places of each sequential machine into
buffer (B) and state places (S) and requiring that in each reachable marking exactly one
state place holds a token. Also, to make analysing networks of sequential machines easier,
one imposes that no step of a sequential machine may perform both input and output.
As long as the whole network is 1-safe however, every net can be transformed into an
equivalent one which fulfils this condition.

Definition 3.1.2
Let N = (SY, TN FN MY (V) be a net. Let S¥ = BU S with BN S = 0.

N is a sequential machine iff

13
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do a dob

b

Figure 3.3: A trivial decision based upon available input — already not free choice

—vVteTVN. |*tNS|=1A[t*NS| =1 (single state invariant) and
— |MY NS| =1 (single state at beginning).
The set S is called the set of state places, the set B the set of buffer places.

Actually [22] lists three other requirements. One which guarantees reachability of all
states of a machine, provided enough input is available in the buffers. This was necessary
as the paper tried to make all transitions in a system life. The requirement has been
dropped here, as it was considered unnecessary and cumbersome, especially when dealing
with initialisation sequences machines might want to perform only once. The second
dropped requirement enforced the free-choice property (Vs € SV. [s*| > 1 = Vt €
s®. |*t| = 1) within each sequential component, effectively prohibiting sequential machines
to react differently to different inputs (compare Figure 3.3). While handy to prove liveness
properties, this requirement makes it impossible to transmit meaningful information to
another sequential component, as the receiver can not base any decision on received
input. See Section 6.2 on why this requirement is only problematic under some implicit
assumptions made so far. The third dropped requirement demanded that transitions
would not perform input and output at the same time. A 1-safe system however can be
transformed into a semantically equivalent one which fulfils this requirement by splitting
every transition in two, connected with a state place.

Sequential machines can be coupled by sharing common buffer places. To remove the
necessity of locking algorithms on the lower level, each buffer is only allowed to be writ-
ten by one machine and read by one machine. Hence each buffer provides a one-way
communication link between a pair of machines.

Definition 3.1.3
Let {N; | 1<i<mn} with N; = (SN, TNi, FNi . M2 (Vi) be a set of sequential ma-
chines. Let S; and B; denote the respective state places and buffer places.
The set is compatible iff
—i#j=5NnS; =0,
-~ Vp.peEBApeEBjApeEBy,=i=jVj=kVk=1,
—i£ =TV *TNi = (), and
— i # =TV NTN® = (.

14



3.2 Asynchronous Finite State Machines

Definition 3.1.4
Let {IV; | 1 <i < n} be a compatible set of sequential machines.

The parallel composition of the machines Ny, Ny, ..., N, } -

_ N; is defined as the net

Nj = (Ui<i<n SN, Ui<i<n ™, Ui<i<n FNi Ui<i<n My, Ulgi;n_fNi), where the labelling
function is handled as a relation.

Every network of sequential machines has a valid distribution as follows. Each sequential
machine is associated with a new location to which all transitions of that sequential
machine and all their preplaces belong. As the sets of preplaces of different sequential
machines are guaranteed to be disjunct, such a distribution always exists.

3.2 Asynchronous Finite State Machines

It is the goal of this thesis to show how to implement arbitrary nets by distributed nets.
Indeed the nets constructed will be nets of coupled sequential machines. However, the
construction shown later is rather lengthy. To increase readability and understanding, the
sequential machines are not represented by nets directly, but as FSMs. To ensure close
correspondence between the FSMs and the nets, the coupling between FSMs is defined
here rather unusually, with semantics mimicking the net behaviour.

When combining multiple FSMs into one bigger system, outputs of one machine and in-
puts of the other together constitute a communication link between the two machines.
Such a communication link will not be observable from the outside of the composed sys-
tem. All other individual actions however stay visible and constitute the outside interface
of the new system. To remove the possibility of conflicts between the two machines when
dealing with the outside world, all resulting input and output actions of the new system
must originate uniquely from one of the two machines. To ease presentation, the addi-
tional — and semantically irrelevant — requirement is imposed that the internal actions are
globally unique.

Definition 3.2.1
Two action signatures ¥ and ¥/ match, iff

- XNy, =0
~YoNX, =0
-3, Ny =0
- XN =0

To define how the composition of state machines behaves, the properties of the commu-
nication links need to be given. To avoid special cases, communication links are modelled
as a queue capable of holding any amount of messages the sender might ever produce.
It will turn out later, however, that all state machines actually constructed in this thesis
will never send a message into a non-empty queue.
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a O e
{start}; {com1} {com1}; {com2}
b Of

{com2}; {} {com2}; {} {idle}: {beep}

c d Os

Figure 3.4: Two (serial) FSMs with matching action signatures, in particular the signature
of the left FSM is ¥ = ({start, com2},{com1}, ) and the right FSM has the
signature X' = ({com1}, {com2, beep}, {idle})

(a,e,{}) O

(b, e, {com1}) O

(b, f,{com2})
(e, f,{}) O

(d, f,{})
{idle}; {beep}

(d.g,{})

(c,g.{}) O
(¢, g, {com2})

Figure 3.5: The composition of the two FSMs of Figure 3.4, again an FSM (unreachable
states not shown), the signature is ¥ = ({start}, {beep}, {idle, com1, com2})
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3.2 Asynchronous Finite State Machines

Definition 3.2.2
Let S = {A; | 1 <i<n} be a set of state machines with pairwise matching action
signatures, i.e. forall 1 <i<n,1 < j <n with i # j, ¥4 and 34 match.

A;, is defined as the

The asynchronous parallel composition of Ay, As, ..., Ay, i

state machine A = (EAH,QAH,qu”,HAII) with
- ZAH = (IS \ 05,05 \ ]S,TS U (IS N Os)) ,

- QA” = Xlﬁzgn QAi X M(IS ﬂ OS),
A
o q0|| = <q6417"'7Q64n7®)7
Al A A 1,0 / / "o
and, for I C 377U and O C 350 (q1, -+ oy Gy M) =>4, (@1, -+, ¢y, M) if and only
if

— for all 1 < i < n either p; MAZ- qi/\IZﬂZ?i ﬂZf” CMorl=0;=0Ap; = q,
— I =Uicicn Li # 0 (input is composed of subcomponent inputs),
= 0 =Ui<i<n Oi N Zg” (output is composed of visible subcomponent outputs), and

- M =(M —=1)+ (U1<i<n, O: N Zf”) (message buffer is correctly adjusted).

Section 6.2 contains a discussion of the differences between this definition of state machine
composition other definitions found in the literature.

Using a multiset for the message buffering requires potentially unbounded storage. How-
ever, this facility will not be used in the main construction of this thesis, which never
outputs a message if the same message is already travelling. The following definition
formalises this property.

Definition 3.2.3
Let A;, Ay, ..., A, be serial FSMs with pairwise matching action signatures. Let A
be the asynchronous parallel composition of all these FSMs.

The composition A is said to be I-safe, iff for all reachable states ¢ € QA1 it holds
that Vo € m,11(q). mnt1(g)(x) = 1.

When proving properties of composed automata, it is advantageous to consider only
the interleaving of the component automata and derive results about parallel behaviour
therefrom. However, this is only possible if the parallel composition behaves in a confluent
way, that is, different scheduling of the components does not lead to different system
states. Indeed the composition defined in Definition 3.2.2 is confluent. A weaker claim
only considering serial FSMs suffices for all proofs later on, however.

Lemma 3.2.1
Let A;, Ay, ..., Ay, be serial FSMs with pairwise matching action signatures. Let A
be their asynchronous parallel composition.

Let 7 C XU and O € 5.
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3 Distributed Systems

If ¢ ﬂAH q" then either |I| = 1 or for all ¢ € I there exists some O’ C O and a ¢’ such

i};0’ i};0\O'
that q {} AH q/ I\{} \ A” ql/-

Proof (Sketch)
See Isabelle/HOL for a formal version.

The action ¢ must have originated from some component A;. Taking O’ to be O; from
Definition 3.2.2, the two steps are possible. O

The parallel composition of FSMs is associative and commutative up to isomorphism.

Proposition 3.2.1
Let A, A" and A” be state machines with pairwise matching action signatures.

Al A~ A A
A[[(A'|A") ~ AJ|A[|A”
(A]A)[|A" ~ Al A A

Proof (Sketch)
See Isabelle/HOL for a formal version of commutativity.

Commutativity via

Qp(qlaq%M) - (CJz,Ch,M) .

Associativity via
e(q1, (g2, g3, My), Ma) = (q1, G2, g3, My + M)

and
80((611,6]2, Ml)aq3a Mz) = (thJQ,C]s, M, + Mz)

respectively. O
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4 Distributed Systems and Branching Time

4.1 Why It Should Not Work

The intuition why distributed implementations of arbitrary systems are impossible under
branching-time semantics is easy to convey using a simple example. Consider the situation
in Figure 4.1. A team of two robots stands in front of two doors. The robots want to reach
at least one barrel of oil, but are separated from the barrels by two doors, which open and
close. Clearly, if the two doors stay closed forever, the robots stand no chance, hence the
restriction is imposed that at each point in time at least one door is open. As branching-
time semantics are considered, it is assumed that the doors may close instantaneously at
any point in time. Nonetheless there is a simple and robust protocol for the two robots to
follow: Drive forward until the barrel is reached. As one door will be open at every point
in time, one robot is guaranteed to drive through. Even if only one door ever opens, the
two robot team reaches one barrel.

Compare now the situation in Figure 4.2 where the same two robots have been reused, but
their batteries have been depleted from earlier usage and they cannot move until they have
reloaded their batteries from an external source. Just such a source has been provided in
form of an external battery right in the middle of the robots, containing enough charge
to carry either robot to the respective barrel, but not both of them. Thus this example
contains a distributed system consisting of two robots which need to communicate about
which one gets to load its battery and moves. Once this has been decided, the branching-
time assumption strikes: Whenever the charge has been transferred to some robot, say
the upper one, the door in front of it closes. As the doors may move arbitrarily fast this
can happen before the robot has any chance to move. Hence any forward movement by
the upper robot is inhibited. Even if the two robots suspect that the upper door will not
open and transfer the charge to the lower robot, the doors may switch status again and
the lower door stays closed from then on. Continuing in this manner, no progress is ever
made.

These considerations do not however exclude a randomised solution. As long as the
behaviour of the doors is not all-knowing and downright evil, the robots stand a fair
chance: By transferring the charge randomly between the two robots and trying to move
every so often (note that in this idealised example world, no energy is lost if a move
was unsuccessful), one robot will eventually manage to get past the respective door. As
the time until this strategy succeeds is unknown a priori, branching-time equivalences
often do detect a difference between this behaviour and the instantly successful attempt
of Figure 4.1. If the equivalence in question does not, a randomised strategy, including
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4 Distributed Systems and Branching Time

Figure 4.1: Two robots wanting to reach a barrel

Sl

N O
R ©

S

Figure 4.2: The same situation as in Figure 4.1 but with depleted batteries
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4.2 Why It Does Not Work

an infinitely improbable infinite loop, is perfectly fine.

The equivalence notion used in the remainder of this section does not allow such loops.
It identifies two systems if after the same observable behaviour, the two systems offer the
same multisets of actions for execution. As the systems cannot enforce the execution of
actions, but have to hope for the world to allow them, “offer” is probably the best choice
of words here.

Definition 4.1.1
Let N = (SN, TN FN MY (N) be a net, o € Act* and X C M(Act).

(0, X) is a step ready pair of N iff

M. MY Loy MAM Ly AX ={AeM(Act) | M 5y},

The set of all step ready pairs of NV is denoted Z(N). Two nets N and N’ are said to
be step readiness equivalent, N ~4 N' ift Z(N) = Z(N').

4.2 Why It Does Not Work

Taking the formal definition of “distributed” from Section 2, it has already been proven
that some behaviours cannot be implemented in a distributed way in [7]. This section
will give a short recounting of the reasoning used there.

Unfortunately the intuitive example given at the beginning of this section does not map to
the formal problem. The two robot system of Figure 4.2 can be represented as depicted
in Figure 4.3 using a net. Using the formal definition of distributed, one finds that
the system is already distributed, as the two transitions cannot fire in parallel. As no
parallelism between transitions is needed, co-locating the two transitions would be a valid
implementation. This would amount to connecting both robots to the external battery
at once, placing them directly in front of the doors, and then trying to move forward. In
that implementation, once a robot detects that it got past the door, it gets all the battery
charge and moves to the goal. Assuming that the short moment while a robots futilely
drives against a closed door consumes only a negligible amount of energy, this solves the
problem.

However, such an implementation is not feasible in the situation depicted in Figure 4.4.
The three robots try to reach at least two barrels, again having to reload their batteries
from the two external batteries provided. For the sake of example the middle robot is
twice as big as the other two, hence in need of twice the energy as well. As before, the
doors open and close arbitrarily fast and unpredictably. The robots have two options to
reach their goal of fetching two barrels. Either the upper and lower robot each grab one
battery, move through the respective doors in front of them and reach one barrel each, or
the larger robot in the middle grabs both batteries, moves through its door and reaches
the two barrels.
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4 Distributed Systems and Branching Time

move upper robot

battery disposal

move lower robot

Figure 4.3: An abstract model of the situation in Figure 4.2

o ©
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Figure 4.4: Three exhausted robots work in a team to reach a total of two barrels
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Figure 4.5: A fully reachable visible pure M
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4.2 Why It Does Not Work

This robot problem corresponds to the net in Figure 4.5. As t and v can potentially
happen in parallel they must not be co-located, hence at least one battery cannot be
connected to both neighbouring robots, giving rise to the same problems as before. In [7]
we found the structure depicted in these figures to be at the core of the problem. The
structure can be described formally as follows.

Definition 4.2.1
Let N = (SN, TN FN MY (V) be a net. N has a fully reachable visible pure M iff

Ftu,ve TV, *tNuDAunv£PAtNw =0 A
V() £ DN (u) £ DAY (v) £ DA
IM € [MY¥). *tUuuU®*v C M .

Clearly, a net containing a fully reachable visible pure M cannot be distributed. Trying
to implement such a net in a distributed manner, one quickly finds that a fully reachable
visible pure M gives rise to a particular step ready pair.

Proposition 4.2.1
Let N = (SN, TN FN MY ¢V) be a plain net which has a fully reachable visible pure
M. There exists (o, X) € Z(N) with

Jda,b,c € Act. a # cAN{b} € X ANMa,c} € X AN{a,b} ¢ X N{b,c} ¢ X .

Proof
See [7]. O

In order to implement a net exhibiting such a step ready pair, one needs at least three
transitions executing the three different actions a, b, and c. As the set X describes the
possible sets of actions after a certain marking M has been reached, all three transitions
must be enabled in the same marking M. Furthermore the transitions executing a and
¢ can happen in parallel and hence cannot share a preplace due to Definition 3.1.1. The
transitions executing a and b cannot execute together, so some shared preplace must exist.
The same holds for the pair of b and c¢. The transition and place structure just described
sounds familiar. Indeed the transitions executing a, b, and ¢ are guaranteed to form a
fully reachable visible pure M.

Proposition 4.2.2
Let N = (SV, TN, FN MY, ¢N) be a net such that there exists (o, X) € Z(N) with
Jda,b,c € Act. a #c N {b} € X ANMa,c} € X ANMa,b} ¢ X A{b,c} ¢ X. Then N has a
fully reachable visible pure M.

Proof
See [7]. O
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4 Distributed Systems and Branching Time

From these propositions, it follows that no distributed system can exhibiting the same be-
haviour as the system of Figure 4.5 up to step readiness equivalence. Hence not all system
behaviours can be implemented in a distributed fashion if step readiness equivalence is
used to compare systems. This result depends on two properties of step readiness equiv-
alence which are not necessary for branching-time equivalences in general. Step readiness
equivalence does not allow the implementation to use divergence, hence a randomised
implementation is ruled out. Furthermore step readiness equivalence respects parallelism.
Otherwise the system could be stripped of all its parallelism by introducing a new place
connected to all transitions by a loop. After all parallelism has been removed the triv-
ial distribution, co-locating all elements is allowed by Definition 3.1.1. Apart from that
however, step readiness equivalence is quite a coarse branching-time equivalence, hence
the impossibility of implementing fully reachable visible pure Ms should hold for most
branching-time equivalences.
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5 Distributed Systems and Linear Time

5.1 Why It Should Work

As daily progress in design and deployment of distributed systems shows, there must be
some way for distributed systems to do useful work in the real world. So either there
exists no real world demand for the behaviours identified as problematic in the previous
section, or the branching-time assumption is not always warranted.

It is indeed the second possibility as a short example demonstrates. Consider a web shop
which sells small four wheeled robots to computer scientists. At some point a scientist has
decided to buy a robot. Then the web shop software and some software of the scientist’s
bank will communicate to ensure prompt payment. The system consisting of these two
software agents has basically two options. Either both agree that the money shall be
transferred and the robot shall be sent. Or they agree on not performing the transaction,
usually due to insufficiency of either robots or, more likely, money. They comprise a
distributed system and can only communicate asynchronously. However no branching-
time problems can arise. The scientist, after having triggered the “buy” button, is simply
not offered any means to communicate a possible change of mind to the web shop software,
and the bank software will blissfully ignore possible concurrent withdrawals and produce
overdraft. Thus while the communication between web shop and bank is in progress,
the environment cannot change in ways which will make the execution of either option
impossible.

Hence this sections considers linear-time semantics. The system is assumed to be fast
in comparison to the world and can first measure all relevant aspect of the world and
therefrom infer which actions will be possible later. Returning to the example from the
earlier section, consider again the robots in Figure 4.2. If the doors are slow in comparison
to the robots’ thoughts, the solution is fairly straightforward. Each robots monitors the
status of the door in front of it. Once a door opens, the charge is transferred to the
robot standing in front of it. The robot subsequently moves before the door has closed
again, thus solving the problem. Ignoring the explicit door monitoring step, this can be
modelled abstractly by assuming that every action the system makes is indeed possible,
as otherwise the system would not have chosen to execute that action in the first place.

Note that this “correctness” of choices is not explicitly represented in the formal models
under consideration. Rather, the difference is in the equivalence relation used for com-
paring two systems. Earlier two systems were only equivalent if at each indistinguishable
point of execution they offered the same set of actions to the world, i.e. would react the
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5 Distributed Systems and Linear Time

same to any states of the world. Now however, two systems are already equivalent if
both offer the same set of possible execution sequences. As both systems are assumed
intelligent enough to make the right choices every time, they would make the same choices
in the same situation and hence exhibit the same behaviour as well.

Also, the equivalence relation will discern live- and deadlocks of the implementation, in
particular since distributed systems have a proven tendency to exhibit them. To prove
that the construction given later does not introduce new live- or deadlocks, an equivalence
which notices those is necessary. Finally, the equivalence notion will discern differences
in parallelism, i.e. two systems of which only one can do two particular actions in parallel
are different. This requirement helps discern systems of different performance.

Definition 5.1.1
Let N = (SY, TN FN MY (") be a net, o € M(Act)* and 0,6 ¢ Act.

o is an incomplete step trace of N iff

M C SN MY 2y M .

00 is a completed step trace of of N iff

IMC SN MY Ly MAM Sy ANBA M 25y

00 is a diverging step trace of N iff

IM C SN MY ==y MAM —y—"sy—"sn - .

The set of all incomplete, completed, and diverging step traces of N is denoted
CST(N). Two nets N and N’ are said to be completed step trace equivalent, iff
CST(N) = CST(N').

Completed step trace equivalence is a straightforward extension of the well known com-
pleted trace equivalence. In particular, it adds the ability to detect parallelism but does
not discern different causal structures. Like completed trace equivalence it does not de-
tect deadlocks in one component of a system, as long as some activity can continue. Also
similarly, it does not imply any fairness or justness conditions. It detects livelocks even
if they are completely independent of other activities in the system, however. Also, this
equivalence mirrors my intuition that if a system can perform activities in parallel, it does
not need to perform them in parallel every time, but will do so often enough to make the
performance improvement significant.

After having defined two systems to be equivalent as per Definition 5.1.1, the remaining
task is to give an algorithm which, given an arbitrary net, constructs an equivalent dis-
tributed version of it. The main problem it solves is how to make a coherent choice of
actions in a set of partly parallel, partly conflicting transitions. In contrast to the results
in Section 4, this choice can be made arbitrary early, in particular without actually firing
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5.2 How It Does Work

any of the transitions. Why is this so? Because it is assumed that all relevant information
about the world is already known to make the correct choice. Hence the transitions in
question will first reach a consensus about which ones fire without exhibiting any external
behaviour and then execute the preplanned set of transitions later. Details of how that
works are given below.

5.2 How It Does Work

This section contains the main results of this thesis and gives a constructive proof of the
existence of a distributed implementation for every behaviour representable by a plain
net up to completed step trace equivalence.

The proof will start at an arbitrary plain net, transforming it into a network of communi-
cating serial FSMs. Each serial FSM will in turn be transformed into a net, and similarly
the coupling between the FSMs will also be transformed into net structures. This slightly
indirect approach allows the interesting problems of the distribution protocol to be de-
scribed in the more compact model of the FSMs. The second mapping, from FSMs to
nets, will be very direct, thereby carrying over the correctness of the protocol back into
the domain of Petri nets.

Before delving into the formal definitions, the intuition behind the protocol should be
explained. Assume a net N is given. First an arbitrary but fixed total order over all
places of N is defined. Then places and transitions of N will be replaced, or implemented,
by small subnets which only communicate asynchronously.

The implementation of a transition, say ¢, waits until all preplaces of ¢ have received a
token. When it decides to fire, the implementation of ¢ requests exclusive permission to use
a token from (locks) all its preplaces in that global order. While the lock is not acquired,
no further activity occurs in the implementation of ¢. The global order guarantees that
deadlocks do not occur. Assume the greatest (according to the global order) locked place
is p, then the transition holding the lock on place p will only attempt to acquire locks
on places greater than p. Once the implementation of ¢ holds locks on all preplaces of
t, it fires, notifies the preplaces of the token removal, and produces new tokens on all
postplaces.

The main complication is handling of failed lock attempts. When the implementation of a
transition ¢ was waiting to acquire a lock on a place p, yet another transition u succeeded
in firing and removed the token located on p, the implementation of ¢ must abort the
lock attempt, must release all currently held locks and resume waiting for all preplaces to
become marked. Livelocks do not occur, as whenever transition ¢ fails to acquire a lock,
some other transition must have fired.

The rest of the algorithm is basically bookkeeping.

27



5 Distributed Systems and Linear Time

The protocol between places and transitions uses the following messages, which all carry
indices denoting the communication partners:

— notify’, (place s has received a token)
— success, (place s granted the lock to transition t)

— loose!, (some transition different from t locked the place s and removed the token
from it)

— token, (place s acknowledges the removal of its token by the transition t)
— lock! (transition t requests exclusive permission to use the token on place s)

— ackUL (transition t acknowledges the removal of the token on place s, while no locking
request is pending from t to s)

— ackLt (transition t acknowledges the removal of the token on place s, after a locking
request has been sent to s)

— unlocky (transition t releases the lock on place s)
— go! (transition t removes the token from s)

— newToken’, (transition t produces a new token on s)

First, the implementation of transitions will be given as an FSM. The implementation
operates in two phases. The first phase collects information about which preplaces are
marked and starts to lock preplaces once all are marked. The second phase is the actual
firing, notifying all preplaces about the removal of a token, then waiting until all preplaces
have acknowledged said removal. Finally new tokens are produced on the postplaces.

The internal actions used are as follows:

— internalLock! (transition t starts to lock place 1)
— internalFire’ (transition t begins firing and starts to remove tokens from preplaces)

— internalDone} (transition t has finished firing and produces tokens on postplaces)
The states of the implementation mirror the two phases closely:

— locking, (L, 1, T) (The transition t tries to lock preplaces. All preplaces in T currently
hold a token, preplaces in L have already been locked, the lock on preplace | s
currently being acquired. If | = 1 no lock is currently being acquired.)

— firing(T") (The transition t removes tokens from the preplaces. Tokens from the
preplaces in T have already arrived.)

Definition 5.2.1
Let N = (SN, TN, FN MY, ¢N) be a plain net. Let < be a total order over SV. Let
1 ¢ T be some new object.

For every transition ¢t € TV the transition simulating automaton of t is defined as an
FSM A, = (24, Q™ g3, =) with
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- XA = (B B4, B4 with
— n = {notify?, success’, loose!, token’, | s € *t},
~ ¥4 = {lock!, ackU?, ackL!, unlock?, go! | s € *t} U
{newToken’ | s € t*} U
{fire’),
~ ¥4 = {internalLock!, internalDone!, internal Fire! },
— QA = {locking;(L,[,T) | L,T C*t,l=1VvIe*t} U {firing(T) | T C °t},
— ¢ = locking, (0, L, 0),
and —4¢ such that
— locking (L, 1, T) {notify, }i0, A, locking,(L,1, T U {s}) for each s & T,
— locking (L, 1, T) {looset }i{ackU:}, A, locking; (L, 1, T\ {s})forse T\ L,s #1+# 1,
— locking, (L, L, T) {loosef }s{ackUs)Uf unlocky, | pEL} A, locking; (0, L, T\{s}) forseT\ L,
~ locking(L, 1, T) lecseihilackljudunlods, | pEL} 1 kine (0, 1, T\ {1}),
— locking, (L, L, *t) {internall.ockj};{lock; } 4, locking, (L, [, *t) for [ = min(*t \ L),
(
(
(

— locking (L, [, *t) MMAt locking; (L U {l}, L,*t),
— locking, (L, 1,T) fsuccessi); {unlock;, | peLu{t} } A, locking, (0, 1, T') for each T # °t,

{internalFire’};{fire!}U{ gof | se*t}

— locking, (*t, L, *t) 4, firing,(0),
— firing;(7) {tOke—ng};@mt firing,(T'U {s}) for each s ¢ T', and

— firing; (*¢) {internalDone' i newTokent | sct*} 4, locking, (0, L, 0).

The implementation of a place goes through the following phases: First the place is
empty, and the implementation is not sending anything. Then a token arrives and the
implementation notifies all posttransitions. Then the place gets locked by some posttran-
sition, possibly queueing other locking requests until the lock holding transition succeeds
in firing or releases the lock. If the lock is released another transition from the queue
is immediately granted the lock. If the current lock holder succeeds in firing, all other
transitions are notified of the token removal. Then the implementation enters its fourth
phase waiting for all transitions to acknowledge said removal, possibly clearing pending
lock requests on the way.

The internal actions used are as follows:

— internalNotify® (place s notifies its posttransitions about the arrival of a token)

— internalPassToken!, (place s sends its token to the transition t)
The states of the implementation mirror the phases as follows:
— empty, (Place s is empty.)
— prenotify, (Place s holds a token but has not yet notified its posttransitions.)

— unlocked (Place s holds a token, has notified its posttransitions but is not yet locked.)

— locked,(t, L) (Place s is locked by transition t, the transitions in L also sent a lock
request but have not been granted the lock.)
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— waiting,(¢, L, W) (The token on place s needs to travel to the transition t, lock re-
quests from all transitions in L have been received, token removal acknowledgements
from all transitions in W have not yet arrived.)

Definition 5.2.2

Let N = (SV, TN, FN MY, (") be a plain net.

For every place s € SV the place simulating automaton of s is defined as an FSM

A = (B%,Q%, g5, —*) with

- B4 = (5, 55, £4) with

- Zf‘ = {lock’, ackU%, ackLY, unlock?, go’ | t € s*} U {newToken’ | t € *s},
— A= {notlfys,successt loose tokent |t € s},
- Zfs = {internalNotify*} U {1nternalPassToken’; | tes},

— Q% = {empty,, prenotify,, unlocked,} U
{lockeds(t, L) |t € s*, L C s*,t ¢ L} U
{waitings(t, L,W) |t € s*, W C s*, t & W, L C W},
= {prenotifys if s e MY

empty, otherwise ’

and —4s such that

— empty, M . prenotifyy,

{1nterna1Not1fy } {notlfys | tes® }

— prenotify, A, unlockedy,

— unlocked, Hedeltsuccessi), | o ced, (¢, @),
— locked,(t, Alod 30, | locked, (t, LU{u}) for each u #t,u & L,

L) ——=
— locked(t, L) {unlock }{Success }As lockedg(u, L \ {u}) for each u € L,

~ locked, (t, ) Lk, | unlocked,,

— locked,(t, L) {goskillooset | ues™uzty | aiting, (¢, L, s* \ {t}),
— waiting,(¢, L, W) Alodks }0, . waitings(t, L U {u}, W) for each u & L,u € W,
— waiting,(t, L, W) MA waiting,(t, L \ {u}, W \ {u}) for each u € L,

(
— waiting,(t, L, W) MA waiting,(¢, L, W \ {u}) for each v & L,u € W, and
(

internalPassToken? };{token?
t ®’ @) { s}{ s}

— waiting, A, emptys.

Definition 5.2.3
Let N = (SN, TN, FN MY (N) be a plain net.
The FSM based asynchronous implementation of N, Ay, is given by

zeSNuTN
A proof that the construction from Definition 5.2.1, Definition 5.2.2, and Definition 5.2.3

is correct, would need a clear notion of correctness. Instead of redefining completed step
trace equivalence for state machines however, the following gives behavioural properties
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of the implementation which will ultimately be used in Theorem 5.2.1 to show completed
step trace equivalence for the overall transformation.

The first interesting property concerns the reachable state space of implementations of
transitions.

Lemma 5.2.1
Let N = (SN, TN, FN MY (V) be a plain net, let < be a total order over SV, and let
t € TN. Let A, be the transition simulating automaton of ¢.

Let g be a reachable state of A;.
Then ((q) with

LCTC*t,Vse Lipe®t\ L. s<p,
L=0VI#1LVT="t,

=1V

(leTANVseLpe®t\ (LU{l}).s<l<p)
{firing,(T) | T C *1}

B(q) < q € {locking,(L,1,T)

Proof
Via induction over the steps necessary to reach q.

B(gg) is trivial.

Let g, I, O, and ¢ such that ¢ ﬂAt ¢ with B(q). The proof of 3(¢') happens via case
distinction over the performed step.

Case locking, (L, 1, T') Mﬁh locking,(L,1,T U {s}), s ¢ T: Only T changed, and it
became larger.

Case locking;(L,(,T) Mmt locking:(L,1,T \ {s}), s € T,s € L,s # | # L:
As only s was removed from T and s ¢ L still L C T C *t. Also [ # L hence still
L#OVI#1LVT="t. And s # [ thus still [ € T..

Case locking,(L, L, T) {looset JifackUs)uf unlock, | pel } 4, locking, (0, L, T\ {s}), s €T\ L:
All conditions are trivial.

Case locking, (L, [, T) oosef;{ackL.{}uf unlock;, | pel} 4, locking, (0, 1, T\ {i}): All conditions
are trivial.
Case locking, (L, L, *¢) Antemallockiillody) o cking, (L,1,%¢), | = min(*t \ L): As the I

was chosen to be the minimum of *t \ L clearly [ € *t and with the additional fact that
VseLpe®t\L s<palsoVse Lpe*t\ (LU{l}). s<l<p.

Case locking; (L, [, *t) M& locking,(L U {I}, L,*t): From [ € *t follows that after
the step L U {{} C °t and from Vs € L,p € *t \ (LU {l}). s < | < p follows that
Vs e LU{l},pe°t\ (LU{l}). s <p. The rest is trivial.

Case locking; (L, 1, T) {ovccessi ) fnlocky, | peLU{I}} 4, locking; (0, 1, T), T # *t: All conditions
are trivial.
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Case locking;(*t, L, *t) {internalFire');{fire' }U{ ot | sc*t} A, firing;(@): Trivial.

Case firing;(7') MAt firing(T'U {s}), s & T Trivial.

{internalDone’ };{ newToken? | set*} M

Case firing;(*t) . locking; (0, L,0): All conditions again
trivial. ]

To shorten the following formulae somewhat, the tuples constituting the composed state
machine states will be equipped with a € operator as follows. If ¢ is a tuple of length
n+1,z € qiff 3 < n. mi(q) = x V x € my1(q). Per construction z will always carry
some indices denoting an original transition or place which uniquely determine the only
index in ¢ where it could possibly occur. Also, keep in mind that the last element of the
state-tuple of the composed FSMs is the message buffer. Thus z € q basically means “the
component denoted by the indices of x is in the state x” or “the message x is currently
travelling” depending on whether x is a message or a state.

Another property of the transformation consists of two mappings between the states
of the composed state machine and those of the original net. In both mappings the
states prenotify,, unlocked, and locked, correspond to full places, whereas all other states
correspond to empty places, except for the duration of transition firings. While in the
original net a transition fires with instantaneous effects, the firing of a transition is a
lengthy process in the implementation. The first mapping f is coherent with the observable
actions, i.e. changes the marking mapped to at the same time as an observable action is
performed and maps to a marking where all currently firing transitions have completely
fired. The second mapping f maps similarly but only considers transitions which left their
firing;(7T") phase completed. While this mapping is not coherent with the observed actions,
it helps with the proof of correctness. In particular it carries the contact freeness of the
original net into the implementation in such a way that the contact freeness becomes
available as an argument at the point where a transition finishes firing.

Definition 5.2.4
Let N be a plain net and let Ay be the FSM based implementation of it.

The function f: Q¥ — P(SY) is defined as

(t. go! € g A (prenotify, € ¢V unlocked, € ¢V
f(q) =< s €SN |3t L. locked,(t, L) € ¢V 3t. newToken! € ¢)) V
3t € s, T. firing,(T) € ¢

The function f : QAN — P(SN) is defined as

prenotify, € q V unlocked € qV
f(q) =< se€ SN | 3t L. locked,(t, L) € q v 3t. newToken’ € ¢V
3t € s*, T firing,(T) € g
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Some states of the state machine, although related through above functions with states
of the net, are in fact never reached. A predicate is needed which decides whether an
automaton state is actually a valid state. It will be proven later that only valid states are
reachable in the automaton.

Definition 5.2.5
Let N be a plain net and let Ay be the FSM based implementation of it.

Let n = |TV] + |SN].
The predicate a C Q¥ is defined as a(q) iff
(A.a) f(q) € [M),
(A.b) f(q) € [M7),
(B) Vi muag)(x) < 1,
(C.s) notify’ € ¢ = unlocked, € ¢V
Ju, L. locked,(u, L) € gAu#t At & LV
Ju, L, W. waiting,(u, L, W) € qAu £t Nt e WAL E L,
(C.t) notify’ € ¢ = 3L,1,T. locking,(L,1,T) € qAs ¢ T,
(C.e) notify! € ¢ = success’ & g A token! & ¢ Alock! & q A ackU? & g A
ackL! & q Aunlock! & ¢ A got & q A Pu. newToken® € g,
(D.s) success’, € ¢ = 3L. locked,(t, L) €q,
(D.t) success’ € ¢ = 3L, T. locking,(L, s, T) € q,
(D.e) success’ € ¢ = notify’ &€ ¢ Aloosel € g A token! & g Alock! & g A ackUL & ¢ A
ackLt & g A unlock! & g A go! € q A Pu. newToken® € ¢,
(E.s) loose! € ¢ = Ju, L, W. waiting,(u, L, W) € gAu £t At € W,
(E.t) loose! € ¢ = 3L,1,T. locking,(L,[,T) e qAseTAs ¢ LV
notify’, € ¢,
(E.e) loose! € q = success’ & g A token! & ¢ A ackU? & ¢ A
ackL! & g A unlock! & g A go! & ¢ A Fu. newToken® € ¢,
(F.s) token’ € ¢ = empty, € g,
(F.t) token! € ¢ = 3T firing(T) € qAs ¢ T,
(F.e) token! € ¢ = notify’ & ¢ A success’ & ¢ Aloosel & g Alock! & ¢ A ackU! & g A
ackL! & q Aunlock! & ¢ A got & ¢ A Fu. newToken® € g,
(G.s) lock! € ¢ = unlocked, € ¢V
Ju, L. locked,(u, L) € gAu#t At & LV
3L. locked,(t, L) € g Aunlock! € ¢V
Ju, L, W. waiting,(u, L, W) EqAu#tAt e WAL E L,
(G.t) lock! € ¢ = 3L, T. locking,(L, s, T) € q V
ackL! € q,
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(G.e) lock! € ¢ = notify’ & ¢ A success’, & g A token! & ¢ A
ackUL & g A got & q A Bu. newToken® € ¢,
(H.s) ackU? €q= Ju, L W. waiting,(u, L, W) EqAuAtAte W AL ¢ L,
(H.t) ackU! € ¢ = 3L,1,T. locking,(L,[,T) € qAs & T,
(H.e) ackU! € ¢ = notify’ & g A success! & ¢ Aloosel, & g A token’, & q A lock! & g A
ackL! & ¢ A unlock! & g A go! € q A Bu. newToken® € g,
(I.s) ackL! €q=Ju,L, W. waiting,(u, L, W) EqAuALIALEWALELV
Ju, L, W. waiting,(u, L, W) € gAu#t Nte WAL & L Alock! € g,
(L.t) ackL! € ¢ = 3L,1,T. locking,(L,|,T) €EqAs T,
(L.e) ackL! € ¢ = notify’ & ¢ A success’ & q Aloosel & g A tokent & g A
ackU?, Z q A unlock’, Z q A go’, Z q A Fu. new Token" € g,
(J.s) unlock! € ¢ = 3L. locked,(t, L) € g,
(J.t) unlock! € ¢ = 3L,1,T. locking,(L,[,T) € qAs & LAL#sV
lock! € g,
(J.e) unlock! € ¢ = notify’ & ¢ A success’ & ¢ Aloose! & ¢ A token’ & g A
ackU! & g A ackL! & g A got & q A Pu. newToken® € g,
(K.s) go\ € ¢ = 3L. locked,(t, L) € g,
(K.t) go! € ¢ = 3T firing,(T) € ¢As ¢ T,
(K.e) go’ € q = notify’ & q Asuccesst & q Aloosel & g A token! & g A
lock! & g A ackU! & g A ackL! & ¢ A unlock! & ¢ A Bu. newToken® € g,
(L.s) newToken’ € ¢ = empty, € ¢,
(L.e) newToken! € ¢ = Fu,u # t. newToken® € g,

(M.a) locking,(L,1,T) € ¢ = Vs € T. unlocked, € ¢ V
Ju, L' locked,(u, L') € q V
Ju, L/, W. waiting,(u, L', W) € g,

(M.b) locking,(L,l,T) € q =
Vs e T\ (LU{l}). unlocked, € ¢V
Ju, I locked,(u, ') € gAu#t At ¢ L'V
3L locked,(t, L') € ¢ A unlock’, € q v
Ju, L', W. waiting,(u, L', W) € qAu#tAt € WAt & L,
(M.c) locking,(L,1,T) € ¢ = Vs € LAL'. locked,(t, L') € g,
(M.d) locking,(L,1,T) € g Al # L = Ju, L. locked;(u, L) € g At Aunt e L'V
lock! € q V
success, € q V
loose] € g,
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(N.a) firing,(T) € ¢ = Vs € *t \ T. 3L, W. waiting,(t, L, W) € q V
gol € qV
token’ € ¢,
(N.b) firing,(T) € ¢ = Vs € T. empty, € q A #u. newToken® € g,
(N.c) firing,(T) € ¢ = Vs € t* \ *t. empty, € ¢ A Pu. newToken® € g,
(N.d1) firing,(T) € ¢ = Vs € t*. Fu € *s,u # t3T". firing, (T") € q,
(N.d2) firing,(T) € ¢ = Vs € *t. Fu € s*,u # t3T". firing, (T") € g,
(N.d3) firing,(T) € ¢ = Vs € t*. Fu € s*,u # t3T". firing, (T") € q,
(0.a) waiting,(t, L, W) € ¢ = 3T. firing,(T) € ¢ A s ¢ T,
(0.b) waiting, (¢, L, W) € ¢ = Yu € s*\ (W U {t})3L', 1, T. locking, (L', 1,T) € g A s¢T,
(t,L,W) € ¢ = Vu € W. loose" € q V
ackUY € g Vv
ackL? € ¢,
(P.a) locked,(t,L) € ¢ = Yu € L3L', T. locking,(L',s,T) € q,
(P.b) locked,(t,L) € ¢ = Vu € s* \ L. 3,1, T. locking,(L',1,T) € gAs € TV
notify? € ¢V
8os €4,
(P.c) locked,(t, L) € ¢ = 3L',1,T. locking,(L',1,T) € gAs € L'V
success! € ¢V
unlock? € ¢ v
gol. € ¢.
(Q.a) prenotify, €q=Vues3L,IT. locking, (L, 1, T) EqAs ¢ T,and
(R.a) unlocked; €q=Vuecs. ILILT. locking, (L, 1, T) EqAseETV
notify? € q.

(O.c) waiting,

The invariant « could have been written more dense, but the presentation used here
emphasises some properties of the terms which will be useful during the following proofs.
First note that conditions (C.*) to (L.*), where the use of * means any character, all
depend on the presence of some message, whereas conditions (M.*) to (R.*) depend on
states.

Furthermore, most terms of the invariant deal just with the communication between a
transition ¢ and a place s without taking any other elements into account. Conditions
(*.s) assert some properties of a place, conditions (*.t) assert properties of transitions and
conditions (*.e) assert exclusiveness of messages.

The behavioural relation between the implementation and the original net is as follows:
Whenever the implementation produces an output of fire!, the original can fire the tran-
sition ¢, and similarly for sets of transitions as well.
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Proposition 5.2.1
Let NV be a plain net and let Ay be the FSM based implementation of it.

fa(g) and ¢ 2%, ¢ then f(g) = (¢). t
falg), g 2%, ¢', and O # 0 then f(g) L1k (g,

Proof

(i): No messages are travelling initially as per Definition 3.2.2. From Definition 5.2.1
follows that initially no transition ¢ is in the state firing,(7") for any 7. Furthermore
from Definition 5.2.2 follows that every initially unmarked place s is in state empty;

and that every initially marked place s is in state prenotify,. Thus f(qS‘N) = MY and
Flag™) = My

(i): (A.*) by (i), (B) — (L.e) by the already noted fact that initially no messages are
present. Every transition ¢ is per Definition 5.2.1 initially in state locking; (0, L, ?) thus
T=L=0and ! = 1 in (M.*) and all hold, as do (N.*). From Definition 5.2.2 fol-
lows that places are initially either in state emptys or in state prenotify,. Hence (O.%),

(P.*) and (R.*), whereas (Q.a) follows from the fact that every transition ¢ is in state
locking, (0, L, ).

(iii): Due to Lemma 3.2.1 it suffices to show that the condition holds for singleton I. From
Definition 3.2.2 follows that each singleton I must correspond to a step of a component
FSM. The proof continues via case distinction over all such possible steps.

Case locking,(L,1,T) Mﬁh locking,(L,1,T U {s}), s ¢ T: The consumption of
notify’ didn’t change f, neither did the state change of the transition.

Case locking;(L,(,T) Mmt locking:(L,1,T \ {s}), s € T,s ¢ L,s # | # L:
The consumption of loose’ didn’t change f, neither did the state change of the transition
or the creation of ackU’ messages.

Case locking,(L, L, T) {looset JifackUs)uf unlock, | pel } 4, locking, (0, L, T\ {s}), s €T\ L:
The consumption of loose’ didn’t change f, neither did the state change of the transition
or the creation of the new messages.

Case locking;(L,1,T) oosef);{ackL.{}uf unlock;, | pel} A, locking, (0, L, T \ {l}): The con-
sumption of loose! didn’t change f, neither did the state change of the transition or
any of the produced messages.

Case locking, (L, L, *t) {internall.ocl }i{lock;} 4, locking,(L,1,°t), l = min(*¢ \ L): No message

was consumed, lock! messages don’t affect f and neither do the transition states.

Case locking; (L, [, *t) Mm locking; (L U {l}, L,*t): Again, success, messages don’t
affect f and neither do the locking(...) states.
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Case locking,(L,1,T) fiuccessj}i{ unlocky, | peluii}} 4, locking; (0, 1L, T), T # *t: Basically as
above.

Case locking;(*t, L, *t) {internalFire' }; {fire' }U{ got, | sc*t} 4, firing;(0): This step is not possible

as the fire® action is not an input of any other component and is thus visible in the outside
step, violating the assumption that the step has no observable output.

Case firing;(7T) MAt firing,(T'U {s}), s € T: The token’ message does not affect f

and neither do the contents of 7', as long as the transition stays in a state of firing,(...).

Case firing; (*?) {internalDone! ;{nevTokent, | sct* } 4, locking; (0, 1, (): For all s € ¢*, it might be

the case that no transition u € *s in state firing,(...) exists any more, but a newToken’
message has been created for exactly those places. From «(q) (N.b), (N.c) and (K.s)
follows that no go? messages are currently travelling towards any postplaces of t.

Case empty, {newToken: }:0, 4, prenotify,, t € *s: While the newToken’ message has been

consumed, the state of s changed to prenotify, thus preserving f.

H oS ot .
Case prenotify, —mwernalNotify Ji{notifyl | res} 4, unlocked,: The place s contributes to f

whether it is in state prenotify, or in state unlocked,. The messages produced don’t
affect f§.

Case unlocked, -locks}dsuceess:) A, locked,(t,0): The place s contributes to f whether it is
in state unlocked, or in some state locked,(...). The messages lock’ and success’ don’t
affect f.

Case locked,(t, L) Mms locked,(t, L U {u}), u # t,u ¢ L: As long as the place s

stays in some state lockedg(. . .) it contributes to f. The message consumed doesn’t affect
f.

Case locked, (¢, L) Lumleckeddsuecessi), | 16cked, (u, L \ {u}), u € L: As long as the place s
stays in some state lockedg(...) it contributes to f. The messages unlock’ and success?
don’t affect f.

Case locked,(t,0) {unlo—(wms unlocked,: The place s contributes to §f whether it is in
state locked, (¢, ) or in unlocked,. The unlock’ message doesn’t affect f.

Case locked, (¢, L) {eestillooses |ues®uty, | wooiting, (¢, L, s* \ {t}): The state of place s
does not contribute to § after this step, but it did not before either, due to the presence
of the go’ message.

Case waiting,(t, L, W) MAS waiting,(t, LU{u}, W), u € L,u € W: The state of the
place does not contribute to f in any state waiting,(...), neither does the lock¥ message.

Case waiting(¢, L, W) MAS waiting,(t, L \ {u}, W \ {u}), u € L: The state of the
place does not contribute to f in any state waiting(...), neither does the ackL.¥ message.

Case waiting,(t, L, W) {Mk—wms waitings(¢t, L, W \ {u}), u ¢ L,u € W: The state

of the place does not contribute to f in any state waitings(...), neither does the ackU¥
message.
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(t,0,0) {internalPassToken, };{tokens }, | empty,: The state of the place does not

s

Case waiting;
contribute to f, neither in state waiting,(¢,?)) nor in state empty,. The message token'
does not change f.

(iv): As before, only singleton I need to be considered. From Definition 3.2.2, Defini-
tion 5.2.1 and Definition 5.2.2 follows that the only Visiblg outputs are of the form fire!.
Thus the only possible step is locking,(*¢, L, *¢) \nternallfire Jiffire Juisos | sett} 2, firing, ().

As N is assumed contact free, it suffices to show that *¢t C f(¢) and f(¢’) = (f(q) \ *t) Ut°.

From «a(q) (M.c) follows that every preplace s of ¢ is in some state lockedg(t,...). From
(K.t) follows that no go’ message is travelling, as ¢ is not in any state firing;(...) in q.
Thus every preplace of ¢ is in f(q).

For every preplace s of t one message go’ is produced, effectively removing s from f(¢’)
unless s is also a postplace of ¢, which is now in state firing;(()). That s does not remain
in f(¢') due to some concurrently firing transition u which also has s in its postset follows
from a(q) (M.c) (every preplace s of ¢ is in a state lockedy(t, ...)), (N.c) (postplaces p of
u which are not in *u are in state empty,), (N.b) and (N.a) (preplaces p of u are either
in state empty, or in a state waiting,(...) or a goj; or a token? message is travelling) and
(F.s) and (K.s) (either message is incompatible with the fact that s is locked to t).

Thus f(¢) = (f(g) \ *t) UE".
(v): (A.a) from (iii) and (iv).

Some parts of (C.e) can be proven from the rest of the invariant. No success’ can exist as
(C.t) and (D.t). No token’ can exist as (C.t) and (F.t). No unlock’, can exist as (C.s) and
(J.s). No go’ can exist as (C.s) and (K.s). No newToken" can exist as (C.s) and (L.s).

Thus I will instead of (C.e) show notify’ € ¢ = lock! & ¢ A ackU! & ¢ A ackL! & ¢.

Similarly for (D.e) via the following deductions. No notify’ can exist as (C.e). No loose
can exist as (D.s) and (E.s). No token’ can exist as (D.s) and (F.s). No ackU’ can exist
as (D.s) and (H.s). No ackL! can exist as (D.s) and (I.s). No go! can exist as (D.t)
and (K.t). No newToken” can exist as (D.s) and (L.s). Assume now that lock exists.
Then from (D.s) and (G.s) follows that also unlock’ exists. Assume that unlock’ exists.
Then from (D.t) and (J.t) follows that also lock’ exists. Thus I will instead of (D.e) show

successt € ¢ = lock! & ¢V unlock! & ¢.

Repeating the same for (E.e). No success’, can exist as (D.e). No token can exist as (E.s)
and (F.s). No ackU? can exist as (E.t), (C.e) and (H.t). No ackL! can exist as (E.t), (C.e)
and (I.t). No unlock! can exist as (E.s) and (J.s). No go’ can exist as (E.s) and (K.s).
No newToken! can exist as (E.s) and (L.s). Thus (E.e).

Repeating the same for (F.e). No notify’ can exist as (C.e). No success! can exist as
(D.e). No loose! can exist as (E.e). No lock! can exist as (F.s) and (G.s). No ackU’ can
exist as (F.s) and (H.s). No ackL! can exist as (F.s) and (I.s). No unlock’ can exist as
(F.s) and (J.s). No gol can exist as (F.s) and (K.s). Thus I will instead of (F.e) show

token! € ¢ = Pu. newToken® € q.
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Repeating the same for (G.e). No notify’, can exist as (C.e). No success’, can exist as (D.e).
No token, can exist as (F.e). No go’ can exist as (G.t), (L.t), and (K.t). No newToken*

can exist as (G.s) and (L.s). Thus I will instead of (G.e) show lock, € ¢ = ackU! & q.

Repeating the same for (H.e). No notify’, can exist as (C.e). No success’, can exist as (D.e).
No loosel, can exist as (E.e). No token’ can exist as (F.e). No lock’, can exist as (G.e). No
unlock’, can exist as (H.s) and (J.s). No go’ can exist as (H.s) and (K.s). No newToken"

can exist as (H.s) and (L.s). Thus I will instead of (H.e) show ackU! € ¢ = ackL! € q.

Repeating the same for (I.e). No notify’ can exist as (C.e). No success’, can exist as (D.e).
No loose!, can exist as (E.e). No token’ can exist as (F.e). No ackU’ can exist as (H.e).
No unlockt can exist as (L.s) and (J.s). No go’, can exist as (I.s) and (K.s). No newToken"
can exist as (I.s) and (L.s). Thus (I.e).

Repeating the same for (J.e). No notify’ can exist as (C.e). No success) can exist as
(D.e). No loose’, can exist as (E.e). No token} can exist as (F.e). No ackU% can exist as
(H.e). No ackL! can exist as (I.e). No go’ can exist as (J.t), (K.t), (G.t), and (L.t). No
newToken? can exist as (J.s) and (L.s). Thus (J.e).

Repeating the same for (K.e). No notify’ can exist as (C.e). No success) can exist as
(D.e). No loose! can exist as (E.e). No token! can exist as (F.e). No lock’ can exist as
(G.e). No ackU’ can exist as (H.e). No ackL! can exist as (I.e). No unlock’ can exist as
(J.e). No newToken? can exist as (K.s) and (L.s). Thus (K.e).

Due to Lemma 3.2.1 it suffices to show that the other conditions holds for singleton
I. From Definition 3.2.2 follows that each singleton I must correspond to a step of a
component FSM. The proof continues via case distinction over all such possible steps.
The attentive reader might suspect now that a case distinction over many cases, each
proving quite a lot of invariant terms, is rather tedious. It is indeed quite a lot of work,
so whoever finds it too lengthy is suggested to skip the rest of this proof.

While referring to the clauses of Definition 5.2.5, the following uses (X) to denote the
respective clause of a(q) and (X)’ to denote clauses from a(q’).

Case locking (L, 1, T) Mmt locking,(L,l, T U {s}), s ¢ T:

Then «(q") as follows: (A.b)" as ' didn’t change. (B)’ as no messages are produced. (*.s)’
as no state of a place implementation is modified, no new message was generated, (G.s)’
asserts the existence of an unlock’, message, (I.s)’ asserts the existence of a lock!, message,
and neither was consumed. (*.e)’ as no new messages have been produced.

(C.t)’ the only value added to T is s and only one notify’, message existed in ¢ as per
(B). (D.t)” and (G.t)’ with the two existing values L and T'U {s} and the fact that no
ackL; message was consumed. (E.t)" as the only notify; message consumed has p = s, s
was added to T and s ¢ L. (F.t)" from (F.t). (H.t)’ from (C.e) as only s was added, and
no ackU’. message can exist. (I.t)" with the same argument for ackL’. (J.t)" as nothing
relevant changed from (J.t). And (K.t)’ from (K.t).
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(M.a)” and (M.b)’ from (C.s), (M.c)’ from the fact that L stayed unchanged. (M.d) as
no relevant messages have been consumed and [ didn’t change. (N.*)” and (O.a)’ as no
terms therein have changed. (O.b)’ from (C.s) since if s is in some state waitings(u, L, W)
then t € W and w in (O.b)’ does not range over ¢. No terms in (O.c)’ and (P.a)’ have
changed, and (P.b)’ stays true as well, as while the notify, message has been consumed,
s was added to T'. (P.c)’ as no relevant messages have been consumed and only 7" was
changed. (Q.a)’ from (C.s) and (R.a)’ with the same argument as (P.b)’.

Case locking; (L, [, T') Mmt locking,(L,1, T\ {s}),s€T,s ¢ L,s #1 # L:
Then «(q') as follows: (A.b)’ as §f didn’t change. (B)’ from (E.e).

(C.s)’ as no place state was changed. No notify’, message existed per s € T and (C.t).
Thus (C.t)" and (C.e)’.

(D.s)” as no place state was changed. (D.t)” as only T was changed. (D.e)’ from (E.e).

(E.s)’ as no place state was changed. (E.t)’ as only s was removed from 7', L remained
equal, no second loose’, message existed as per (B), and no notify, message was consumed.

(E.e)’ from (B).
(F.s)” as no place state was changed. (F.t)" from (F.t). (F.e)’ from (E.e).

(G.s)” as no place state was changed. (G.t)" as only T" was changed and no ackL} message
was consumed. (G.e)’ as with s # [ no lock), message can exists per (G.t) and (E.e).

(H.s)’ from (E.s) and (M.b). (H.t)’ trivially from the performed step. (H.e)’ from (E.e)
which enforces that no ackL! message can exist.

(I.s)" as no place state was changed and no lock) was consumed. (I.t)” as something was
removed from 7.

(J.s)” as no place state was changed. (J.t)" as only 7" was changed and no lock; was
consumed.

(K.s)" as no place state was changed. (K.t)’ from (K.t).
(L.s)" as no place state was modified. (L.e)" as no newToken); messages were produced.

Terms only improved for (M.a)’, (M.b)’, (M.c)’, (N.*¥)’, (O.a)’, (O.b)’, (P.a)’, (P.c)’, and
(Q.a)’. (M.d)’ as the consumed loose’, message has s # . (O.c)’ as the loose’, was replaced
by the ackU’ message. Note that s is in a state waitingg(...) from (E.s). Thus (P.b)’ and
(R.a)".

Case locking, (L, L, T) {looset i {ackUt ju{unlock, | peL} 4, locking, (0, L, T\ {s}),se T\ L:

Then «a(q') as follows: (A.b)’ as f didn’t change. (B)’ as an earlier ackU’ message is
excluded per (E.e) and the unlock! are unproblematic as per (J.t), (G.t), and (Lt).

(C.s)’ as no place state was changed. (C.t)’ as T became smaller. As the only critical
message for (C.e)’ is the ackU, message, it suffices that from (C.t) follows that no notify’
message existed in q.

40



5.2 How It Does Work

From (D.t) follows that no success’ message can exist in g. Thus (D.*)’.

(E.s)” as no place state was changed. (E.t)’ as the only element removed from 7" was s.
There existed only one loose! message per (B) and that was consumed.

From (F.s) follows that no token? message existed before. Thus (F.*)’.

(G.s)” as no place state was changed and no unlock? message was consumed. Assume some

lockl. € ¢. Then per (G.t) there must also exist some ackL! € ¢, which was not consumed.
Thus (G.t)". From (I.t), no such ackLl message can exist for any s € T however, hence

lock! & ¢ and thus (G.e)’.

(H.s)” from (E.s) and (M.b). (H.t)’ trivially from the performed step. (H.e)’ from (E.e)
which enforces that no ackL! message can exist.

(I.s)” as no place state was changed and no lock” was consumed. (I.t)’ as something was
removed from 7.

(J.s)” as no place state was changed. (J.t)’ as L became smaller and no lock" was con-
sumed.

From (K.t) follows that no gol message can exist. Thus (K.*). (L.s)’ as no place state
was modified. (L.e)’ as no newToken! messages were produced.

Terms only improved for (M.a)’, (M.c)’, (N.*¥)’, (O.a)’, (O.b)’, (P.a)’, and (Q.a)’.

(M.b)” from (M.c) and the newly produced unlock! messages. (M.d)” as the only loose;
message consumed has r = s and u = ¢, but ¢ is in state locking, (0, L, T\ {s}) after the
step. (O.c)” as the loose! message was replaced by the newly produced ackU’ message.
Note that s is in a state waiting,(...) from (E.s). Thus (P.b)’. (P.c)’ with the newly
produced unlock! messages. (R.a)’ with the same argument as (P.b)’".

Case locking;(L,1,T) {loosef };fackl.{}Uf unlock; | pel} 4, locking, (0, 1L, T\ {I}):

Then a(q') as follows: (A.b)’ as f didn’t change. (B)’ from (E.e) and (J.t), (G.t), and
(L.t).

(C.s)” as no place state was changed. (C.t)" as T' became smaller. From (C.t) with the
performed step follows that no notify’. message existed for r = 1. Thus (C.e)’.

(D.s)” as no place state was changed. (D.t)" as only success. messages with r = [ are
possible from (D.t) but (E.e) and thus no such message exists. Thus also (D.e)’.

(E.s)’ as no place state was changed. (E.t)’ as the only element removed from T was I.
The only problematic message is thus loose! which was consumed however and existed
only once as per (B). Also no notify” message was consumed.

From (F.t) no messages token’ can exist. Thus (F.*)’.

(G.s)” as no place state was changed and no unlock? message was consumed. (G.t)" as
for a possible lock! € ¢ there is ackL] € ¢’ and for some lock!. € ¢ with € L there must
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be an ackL! message already as per (G.t). Thus (G.t)’. (G.e)’ as neither lock” nor ackU%
messages have been produced.

(H.s)” as no place state was changed. (H.t)’ as T" became smaller. (H.e)" as the only new
ackL? message has r = [ and u = ¢ and (E.e).

(I.s)” as no place state was changed and no lock” was consumed. (I.t)" as T' became smaller
and [ was specifically removed. (J.s)’ as no place state was changed. (J.t)" as no lock¥
message was consumed and no place equals L or is in the empty set.

From (K.t) follows that no firel. message existed, thus (K.*)’. (L.s)’ as no place state was
modified. (L.e)’” as no newToken" messages were produced.

Terms only improved for (M.a)’ (M.c)’ (N.*)’ (O.a)’, (O.b)’, and (Q.a)’. (M.b)" as for all
s € L (M.c) implies that locked,(t, L') € ¢ for some L’ and the step generated respective
unlock! messages. (M.d)’ as the only message consumed was loose! and in ¢’ the transition
t is in the state locking, (0, L, T \ {l}) which is unproblematic for (M.d)’. (O.c)’ as the
loose! message was replaced by ackL{. Per (P.a) ¢ was only in one L of a locked, (u, L) € g,
namely with » = [. From (E.s) however, that state is no longer present. Thus (P.a)’ and
with the fact that only [ was removed from T also (P.b)’. (P.c)’ with the newly produced
unlock! messages. From (P.a), (E.s), and that only I was removed also (R.a)’.

Case lockingt(L, J_’ .t) {internallock}};{lock!} A, lockingt(L, l, .t), ] = min(‘t \ L)
Then «a(q’) as follows: (A.b)” as f' didn’t change. (B)’ from (G.t) and (L.t).

~

From (C.t) follows that notify; ¢ ¢. Thus (C.*)’. From (D.t) follows that no success},
message can exist in ¢. Thus (D.*)".

(E.s)” as no place state was changed. (E.t)" as no notify; messages were consumed and
the first and last components of the transition state didn’t change.
can exist. Thus (F.*)’. With (H.t) for (H.*)". With (L.t)

Y

From (F.t) no messages token
for (I.*)". With (K.t) for (K.*

The above argument with (G.t) and (I.t) works towards (G.*)’ for all messages but the
newly produced lock!. Still (G.s)’ together with (M.b), (G.t)’ from the step, (G.e)’ from
the fact that no ackU! message exists per (H.t).

~—

(J.s)” as no place state was changed. Assume there existed some unlock; = q- It p #1
everything stays well, if p = [ then the appropriate lockf, was produced, thus (J.t)".

(L.s)” as no place state was modified. (L.e)’ as no newToken) messages were produced.

Terms only improved for (M.a)’, (M.b)’, (M.c)’, (N.*¥)’; (O.*)’, (P.*)’, (Q.*)” and (R.*)".
(M.d)’ with the newly produced lock! message.

Case locking;(L, [, *t) MMAt locking; (L U {l}, L, *t):

Then «(q’) as follows: (A.b)" as f' didn’t change. (B)’ as no messages are produced. From
(C.t) follows that no notify] message can exist. Thus (C.*)’.
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From (B) and (D.t) follows that exactly one success; message can exist, which has p = [.
It was consumed though, so (D.*)’.

(E.s)” as no place state was changed. (E.t)" as no notify) messages were consumed, the
last component of the transition state didn’t change, and the only element added to L
was [ for which (D.e) guarantees that no loose] message exists.

From (F.t) follows that no fire) message exists. Thus (F.*)’.

From (G.t) and (I.t) follows that every lock] message must have p = I. By (D.e) no such
message exists and (G.*)’.

From (H.t) follows that no ackU! message exists and (H.*). Using (I.t), (I.*)" follows
similarly.

(J.s)” as no place state was changed. (J.t)" as the only element added to L was I.

(K.*)" again via (K.t). (L.s)” as no place state was modified. (L.e)’ as no newToken}
messages were produced.

Terms only improved for (M.a)’, (M.b)’, (N.*)’, (O.*)’, (P.b)’, (Q.a)’, and (R.a)’.

(M.c)” with (D.s). (M.d)’ as the only message consumed was success, and in ¢’ the
transition ¢ is in the state locking;(LU{l}, L, *t) which is unproblematic for (M.d)’. (P.a)’
as from (D.s) follows that [ is in a state locked;(t, L) with ¢t ¢ L’ per Definition 5.2.2.
(P.c)” as only the success] message was removed and [ was added to L.

Case locking;(L,1,T) fsuccess}i{ unlocky, | pelufi}} A, locking, (0, 1L, T), T # *t:

Then a(q’) as follows: (A.b)” as §' didn’t change. Assume some unlock] message already
existed with p =1 or p € L. If p = [ there is a contradiction with (D.e), hence p € L. For
p € L however (J.t), (G.t) and then (L.t) constitute a contradiction as well. So no such
unlock!, message existed and (B)’.

(C.s)” as no place state was modified. (C.t)’ as T' remained equal. (C.e)’ as no lockY,
ackU, or ackL}' messages have been produced.

From (D.t) and (B) follows that no further success’ message existed. Thus (D.*)’.

(E.s)” as no place state was changed. (E.t)’ as no notify* messages were consumed and
the last component of the transition state didn’t change.

From (F.t) follows that no firel. message exists. Thus (F.*)’. From (K.t) similarly (K.*).

(G.s)” as no place state was modified and no unlock? message was consumed. (G.t)’ as
from (D.e) no lock] existed and for all other lock’, € q (G.t) guarantees that there is an

ackL! € ¢ which was not consumed. (G.e)’ as neither lock! nor ackUY messages have been
produced.

(H.s)” as no place state was modified. (H.t)" as T remained equal. (H.e)’ as neither ackU¥
nor ackL messages have been created.
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(I.s)” as no place state was modified and no lock? have been consumed. (I.t)" as 7' remained
equal.

As argued for (B)’ no unlock, messages existed before the step. Now however, unlock],
messages exist, one with p = [ and the others with p € L. For the one with p =1 (J.s)’
follows from (D.s). For those with p € L (J.s)’ from (M.c). (J.t)’ from the performed
step.

(L.s)” as no place state was modified. (L.e)’ as no newToken; messages were produced.
Terms only improved for (M.a)’, (M.c)’, (N.*)’, (O.*)’, (P.b)’, (Q.a)’, and (R.a)’.

(M.b)’ from (D.s), (M.c), and the newly produced unlock] messages. (M.d)’ as the only
message consumed was success! and in ¢’ the transition ¢ is in the state locking, (0, L, T')
which is unproblematic for (M.d)’.

Assume a place p existed in state locked,(u, L) with ¢ € L. Then p = [ from (P.a). Then
there is a contradiction with (D.s). Thus no such place exists and (P.a)’. (P.c)’ as the
success, message was replaced by an unlock! message.

Clase lockingt('t, J_, .t) {internalFiret};{ﬁret}U{gog | se't} " ﬁringt((Z)):

Then a(q’) as follows: (A.b) as all preplaces s of t are currently in a state locked, (¢, L) for
some L per (M.c). Thus § didn’t change. The fire’ message is an output of the composed
state machine and does not affect (B)’. From (K.t) no go, message existed before the step,
thus (B)’.

From (C.t) no notify, message existed, thus (C.*)’. From (D.t) similarly (D.*)’. From
(E.s) and (M.c) thus (E.*)’. From (F.t) thus (F.*)". From (G.t) and (I.t) similarly (G.*)’.
From (H.t) thus (H.*)". From (L.t) thus (I.*)". From (J.t), (G.t), and (L.t) thus (J.*)".

(K.s)’ from (M.c). (K.t)’ trivially from the performed step.

(L.s)” as no place state was modified. (L.e)’ as no newToken) messages were produced.
Terms only improved for (M.*)’, (O.a)’, and (O.c)’.

(N.a)’ from the produced go’ messages. (N.b)" as T' is empty after the step.

From (M.c) follows that every place s in *t is in state locking,(¢, L) with some L. From
(K.t) no go’ message existed before the step.

From (A.b) and Definition 5.2.4 then *¢ C f'(¢). As N was assumed to be contact free,
then for every place s in t* \ *t, s ¢ f(¢). Thus s must be in state emptys and no
newToken? message exists. Thus (N.c)’.

Also from (A.b) and Definition 5.2.4, *t C f(¢). As N was assumed to be contact free, then

for every place s in t* \ *t, s & f(¢). Thus there cannot exist u € *s with firing,(7") € ¢
for some 7". Hence (N.d1)".
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Assume some u # t with firing, (U) € ¢ for some U and p € *t N *u existed. Then per

(M.c) and (N.b) p ¢ U. With (M.c), (N.a), and (K.s) then token} € ¢. But then (F.s)
and (M.c) form a contradiction. Thus no such u can exist and (N.d2)’.

As already argued for (N.c)’, for every s € t* \ *t, s ¢ §(¢) and per Definition 5.2.4 no
u € s* with firing,(...) € ¢ can exist. For s € *f the same arguments as for (N.d2)’ can

be applied, again showing that no u € s* with firing,(...) € q exists. Thus no such u
exists for any s € ¢* and (N.d3)".

Assume there existed some place p with waiting,(u, L, W) € ¢ and ¢ € p* \ (W U {u}).
Then there would be a contradiction between (O.b) and the initial state of the step. Thus
no such place exists and (O.b)’. Using (P.a) a similar argument shows (P.a)’.

(P.b)” and (P.c)’ with the produced go’ messages. (Q.a)’ and (R.a)’ as all preplaces p of
t are in a state locked, (¢, L) for some L per (M.c).

Case firing;(7') MAt firing,(T'U {s}), s ¢ T"
Then «(q') as follows: (A.b)” as ' didn’t change. (B)’ as no messages are produced. Thus
also (*.e)’.

From (C.t) no notify, message existed, thus (C.*)’. Similarly (D.t) shows (D.*)". (E.t)
and (C.t) thus (E.*)". (G.t) and (Lt) thus (G.*)’. (H.t) thus (H.*)’. (Lt) thus (I.*)"
(J.t), (G.t), and (L.t) thus (J.*)".

(F.s)” as no place state was changed. (F.t)" as the only place added to T was s and via
(B) no second token’ message existed.

(K.s)’ as no place state was changed. (K.t)’ as the only place added to T was s and via
(F.e) no go’ message existed.

(L.s)” as no place state was modified. (L.e)’ as no newToken; messages were produced.

Terms only improved for (M.*)’, (N.c)’, (N.d1)’, (N.d2)’, (N.d3)’, (O.b)’, (O.c)’, (P.*),
(Q,a)” and (R.a)’.
(N.a)” as the only message consumed was token’, and s was added to T. (N.b)’ from (F.s)

and (F.e). (O.a)’ as the only place added to T was s and (F.s) enforces that s is in state
emptys.

Case ﬁringt(’t) {internalDonet};{newTokeng | set‘} " lockingt((i), 1, @)

Then a(q’) as follows: From (A.b) and Definition 5.2.4 follows that *¢ C f'(¢'). As N was
assumed to be contact free, thus §'(¢) [{t})~ (f(¢) \ °t) Ut*. With the performed step
and (N.d2) follows that f'(¢') = (f'(q) \ *t) Ut*. Thus (A.b)".

For every s € t* either s € ¢t* \ *¢ or s € *t. Then (B)’ from (N.b) and (N.c).

U

From (C.t) no notify} message existed, thus (C.s)” and (C.t)’. As neither notify}, locky,
ackUy nor ackL messages have been produced (C.e)’.
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From (D.t) similarly (D.s)” and (D.t)’. As neither successy;, lock, nor unlock) messages
have been produced (D.e)’.

From (E.t) and (C.t) similarly (E.s)" and (E.t)’. (G.t) and (I.t) thus (G.s)’ and (G.t)’.
(G.e)’ as neither locky nor ackU} messages have been produced.

(H.t) thus (H.s)" and (H.t)’. (H.e)" as neither ackUy nor ackLy messages have been
produced.

(I.t) thus (L.s)’ and (I.t)". (J.t), (G.t) and (L.t) thus (J.s)" and (J.t)". (K.t) thus (K.s)’
and (K.t)’.

(F.t) thus (F.s)” and (F.t)’. Assume tokeny € q. For u =t (F.t) is a contradiction with
the performed step, thus u # ¢. For p € ¢* there is a contradiction with (F.t) and (N.d3).
Thus (F.e)’.

(L.s)” and (L.e)’ from (N.b) and (N.c). (M.*)” as all three arguments of the new state are
empty.

Terms only improved for (N.a)’, (N.d1)’, (N.d2)’, (N.d3)’, (O.b)’, (O.c)’, (P.*)’, (Q.a)’
and (R.a)’.

Now consider (N.b)” and (N.c)’, which are problematic as new newToken’ messages have
been produced. Take any s € ¢*. From (N.d3) there exists no transition u # t with s € *u

and firing,(...) € ¢. Thus (N.b)’. From (N.d1) there exists no transition u # ¢ for which
firing,(...) € ¢ and s € u®. Thus (N.c)’.

From (N.b) follows that no preplace p of ¢ can be in a state waiting,(¢, L, W) for any L
and W. Thus (O.a)’.

{newToken?};0

Case empty, A, prenotifyg, t € ®s:

Then «(q') as follows: (A.b)” as ' didn’t change. (B)’ as no messages are produced. Thus
also (*.e).

From (C.s) follows that no notify* messages could have existed in g. Thus (C.*)’. Similarly
from (D.s) follows (D.*)’. From (E.s) follows (E.*)’.

From (F.e) follows that no token! message existed. Hence (F.*)’.

From (G.s) follows that no lock? message existed. Thus (G.*)’. From (H.s) similarly
(H.*). (Ls) thus (I.*)". (J.s) thus (J.*%)’. (K.s) thus (K.*)’.

(L.s)” as the only place which changed state was s and no second newToken" existed,
neither for u = ¢ as per (B) nor for u # ¢ per (L.e).

Terms only improved for (M.*)’, (N.a)’, (N.d1)’, (N.d2)’, (N.d3)’, (O.*)’, (P.*)’, and
(R.a)’. (N.b)” and (N.c)’ as for the only place which changed state there existed a
newToken’ message.
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Take a posttransition u of s. If w is in a state firing,(U) then s € U would lead to a
contradiction with (N.b). Thus s ¢ U and with s € *u then s € *u \ U. Then from
(N.a) follows that either a go¥ or a token? message exists. That leads to a contradiction
via (K.e) and (F.e) respectively. If w is in a state locking,(L,l,T") then s € T leads
to a contradiction with (M.a). The only remaining possibility is that « is in a state
locking, (L, 1, T) with s ¢ T. Thus (Q.a)’.

{internalNotify*}; { notify? | tcs*}

Case prenotify, A, unlocked:

Then «(q') as follows: (A.b)” as f didn’t change. From (C.s) follows that no notify’
messages existed yet, so (B)’.

(C.s)’ trivially from the performed step. (C.t)’ from (Q.a). (C.e)’ from (G.s), (H.s), and
(I.s) which respectively ensure that no lock’, no ackU?%, and no ackL! messages exist.

From (D.s) follows that no success’ message exists, thus (D.*)’. Similarly from (E.s)
follows (E.*)". From (F.s) follows (F.*)’. (G.s) thus (G.*)". (H.s) thus (H.*)’. (L.s) thus
(L*). (J.s) thus (J.*¥)’. (K.s) thus (K.*)’. (L.s) thus (L.*).

Terms only improved for (M.*)’, (N.*)’, (O.*)’, (P.*¥)’, and (Q.a)’.

(R.a)’” from the produced notify’, messages.

Case unlocked, {eckeilsceessih | 16 cked, (¢, 0):

Then a(q’) as follows: (A.b)" as § didn’t change. (B)’ as from (G.e) no success’, could
have existed.

(C.s)” as the only transition u for which a notify” message would be problematic is t. But
per (G.e) no notify’ message exists. Thus also (C.e)’. (C.t)’ as no state of a transition
was changed.

From (D.s) no success? message existed. Thus (D.*)’. From (E.s) similarly (E.*)’. (F.s)
thus (F.*)".

(G.s)’ as the only transition u for which a lock? message would be problematic is ¢t. But
the lock! message was consumed and per (B) no second one exists. Thus also (G.e)’.
(G.t)" as no state of a transition was changed and no ackL} message was consumed.

From (H.s) no ackUY message existed. Thus (H.*)’. (L.s) thus similarly (I.*)’. (J.s) thus
(J.*). (K.s) thus (K.*)". (L.s) thus (L.*)".

Terms only improved for (M.a)’, (M.c)’, (N.*¥)", (O.*)’, (Q.a)’, and (R.a)’.

(M.b)" as the only problematic transitions could be ¢, but from (G.t) and (I.s) follows
that ¢ is in a state locking; (L, [, T) with [ = s. (M.d)’ as the consumed lock! message has
been replaced by the success’, message.

(P.a)’ from the performed step. (P.b)" from (R.a). (P.c)’ with the produced success!
message.
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Case locked,(t, L) Mms locked, (¢, LU {u}), u # t,u & L:

Then «(q') as follows: (A.b)” as ' didn’t change. (B)’ as no messages are produced. Thus
also (*.e)’.

(C.s)” as the only transition added to L was u and from (G.e) no notify” message existed.
(C.t)’ as no state of a transition was changed.

(D.s)” with the new value L U {u}. (D.t)’ as no state of transition was changed.

From (E.s) follows that no loose! message existed. Thus (E.*)’. Similarly (F.*)" follows
from (F.s).

(G.s)” as the only transition v for which a lock? message would be problematic is u. But
the lock” message was consumed and per (B) no second one exists. (G.t)’ as no state of
a transition was changed and no ackL; was consumed.

From (H.s) follows that no ackU? message existed. Thus (H.*)’. Similarly (I.*)" follows
from (Ls).

(J.s)’ with the new value L U {u}. Assume a unlock? € ¢ exists. The only problematic
case for (J.t)" is v = u as no transition state was changed and only lock¥ was consumed.
However no unlock? message exists as (J.s) and ¢ # u from the performed step lead to a
contradiction otherwise. Thus (J.t) .

(K.s)” with the new value L U {u}. (K.t)” as no state of a transition was changed.
From (L.s) follows that no newToken? message existed. Thus (L.*)’.
Terms only improved for (M.a)’, (M.c)’, (N.*¥)’, (O.*)’, (P.b)’, (P.c)’, (Q.a)’, and (R.a)’.

(M.b)" as the only value added to L was u and from (G.t) and (I.s) follows that « is in a
state locking, (L, [, T) with [ = s. (M.d)’ as the only consumed lock? message has v = u
and v was added to L.

(P.a)’ with the same argument as (M.b)’.
Case locked,(t, L) tumodkekdsuceessih, | 10 kod, (u, L \ {u}), u € L:

Then «(q’) as follows: (A.b)’ as f' didn’t change. (B)’ as per (D.s) no success? message
could have existed before.

C.s)’ as something was removed from L. (C.t)’ as no state of a transition was changed.
g g
(C.e)’ as no lock?, no ackU?, and no ackL? messages have been produced.

(D.s)’ trivially from the performed step. (D.t)’ from (P.a). No unlock? message could
have existed as (J.s). Thus (D.e)’.

From (E.s) follows that no loose? message can exist. Thus (E.*)’. Similarly from (F.s)
follows (F.*)".

Assume some lock!? message exists in q. For v # t and v # u nothing relevant changed
in (G.s)’. For v =t the unlock’ message was removed, but ¢ ¢ L from Definition 5.2.2
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so (G.s)" as far as a possible lock} is concerned. For v = u no lock” message could have
existed as (G.s) and u € L. Thus (G.s)’.

(G.t)" as no state of a transition was changed and no ackL; was consumed. (G.e)” as no
ackU) message was created.

From (H.s) follows that no ackU? message existed. Thus (H.*)’. The same argument with
(L.s) shows (I.*)’.

(J.s)” as the only problematic message could be unlock’, but it was consumed and per (B)
no second one exists. (J.t)" as no state of a transition was changed and no lock} message
was consumed.

(K.s)” as the only problematic message could be go’ but such a message does not exists
as per (J.e). (K.t)" as no state of a transition was changed.

From (L.s) follows that no newToken? message existed. Thus (L.*)’.
Terms only improved for (M.a)’, (N.*)’, (O.*)’, (P.a), (Q.a)’, and (R.a)’.

To show (M.b)’, assume some transition v exists such that locking,(L',,T) € ¢ and
seT\ (L'U{l}). If v # ¢t and v # u then nothing relevant changed in (M.b)’. For v = u
there is a contradiction with (M.b) as u € L. For v =t (M.b)’ holds as ¢ ¢ L. Thus
(M.b)".

The only transition problematic for (M.c)’ is ¢, but from (J.t) either ¢ is in a state
locking; (L, 1,T) with s ¢ L or lock!, € ¢ from which via (G.t) follows locking,(L, s, T) € ¢

where also s ¢ L per Lemma 5.2.1 or there must be an ackL! message which is not possible
as per (Ls). Thus (M.c)".

M.d)’ as the removal of u from L is unproblematic with the newly produced success?
y s
message.

(P.b)’ from (P.a) as the only problematic transition is u which was in L earlier. (P.c)’ as
the unlock’ message was consumed but the first component of the state changed to u for
which (P.c)” holds with the newly produced success” message.

Case locked,(t, ) MAS unlocked,:

Then «(q’) as follows: (A.b)” as f didn’t change. (B)’ as no messages are produced. Thus
also (*.e)’.

(C.s)’ from the performed step. (C.t)” as no state of a transition was changed.

(D.s)’ as no success’, message existed per (J.e) and no other success” message existed per
(D.s). (D.t)” as no state of transition was changed.

From (E.s) follows that no loose! message can exist. Thus (E.*)’. Similarly from (F.s)
follows (F.*)".

(G.s)’ from the performed step. (G.t)’ as no state of a transition was changed and no
ackL; was consumed.
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From (H.s) follows that no ackUY? message existed. Thus (H.*)". Using (L.s) follows (I.*)’
similarly.

(J.s)” as the only possible unlock¥ message has u = ¢. That message was consumed
however, and per (B) no second one existed. (J.t)” as no state of a transition was changed
and no lock) was consumed.

(K.s)” as the only possible go¥ message has u = ¢t. From (J.e) however, no such message
existed. (K.t)’ as no state of a transition was changed.

From (L.s) follows that no newToken” message existed. Thus (L.*)’.
Terms only improved for (M.a)’, (M.b)’, (M.d)’, (N.*¥)’, (O.*)’, (P.a)’, (P.b)” and (Q.a)’.

The only transition problematic for (M.c)’ is ¢, but from (J.t) either ¢ is in a state
locking; (L, 1, T) with s ¢ L or lock, € ¢ from which via (G.t) follows locking,(L, s, T) € ¢
where also s ¢ L per Lemma 5.2.1 or there must be an ackL! message which is not possible
as per (I.s). Thus (M.c)’.

(P.c)” as the only unlock}; message consumed has p = s and u = t and the new state of s
is unproblematic. (R.a)’ from (P.b) as (J.e) excludes a go’, message.

Case locked, (¢, L) {geskilooses | ves™uzth, | oaiting,(t, L, s* \ {t}):

Then a(¢) as follows: (A.b)’ as f didn’t change since go! € ¢ implies via (K.t) that
firing,(T) € q for some T. (B)’ as (E.s) ensured that no loose? message existed before.

To show (C.s)’ assume that some notify? message existed. Then from (C.s) follows that
v#tand v ¢ L. Thus v € s* \ {t} and waiting,(¢, L, s* \ {t}) makes (C.s)’ true for that
message. Thus (C.s)’. (C.t)’ as no state of a transition was changed. (C.e)’ as no lock?,
no ackU?, and no ackL} messages have been produced.

(D.s)’ as every message success” must have v = ¢ per (D.s) and success’ is excluded by
(K.e). (D.t)’ as no state of a transition was changed. (D.e)’ as no lock? and no unlock?
messages have been produced.

No loose? message could have existed in ¢ as per (E.s). For the newly created messages
(E.s)’ follows from the performed step. (E.t)’ follows from (P.a), (P.b) and (M.c) together

with the observation that every go? € ¢ must have v = ¢ per (K.s).
From (F.s) follows that no token? message can exist. Thus (F.*)".

Assume some lock? message existed in q. For v # ¢ the state waiting,(¢, L, s* \ {t}) makes
(G.s)’ true for that message. For v = ¢ an unlock! message would need to exist, which is
not the case as per (K.e). Thus (G.s)’. (G.t)’ as no state of a transition was changed and
no ackl) has been consumed. (G.e)’ as no ackU) message was created.

From (H.s) follows that no ackU? message existed. Thus (H.*)’. Similarly (I.*)" follows
from (Ls).
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From (J.s) follows that every message unlock? has v = t. But unlock! & ¢ from (K.e).
Thus (J.s)’. (J.t)” as no state of a transition was changed and no lock) was consumed.

From (K.s) follows that every message go’ has v = t. But go’ was consumed and no
second one existed as per (B). Thus (K.*)’.

From (L.s) follows that no newToken"” message existed. Thus (L.*)’.

Terms only improved for (M.a)’, (N.b)’, (N.c)’, (N.d1)’, (N.d2)’, (N.d3)", (P.a)’, (P.b)’,
(Q.a)’, and (R.a)’.

For (M.b)’ assume some transition v with locking,(L’,{,T) € ¢ and s € T \ (L U {l})
exists. If v # ¢ then v € s* \ {t} and (M.b)’ holds for v. If v = ¢ then there would need
to be an unlock’ message which is a contradiction to (K.e). Thus (M.b)’.

(M.c)” as the only problematic transition could be ¢ which however is in state firing;(7)
for some T as per (K.t). (M.d)’ with the newly produced loose? messages.

(N.a)’ as the only go, message consumed has p = s and v =t and s switched its state
into waiting,(t, L, s* \ {t}).

(0.a)” from (K.t). (O.b) as s*\ ((s*\ {t}) U{t}) = 0. (O.c)’ with the newly produced

loose? messages.
(P.c)” as the only go;, message consumed has p = s but the new state of s is unproblematic.
Case waitingg(t, L, W) Mms waiting (¢, LU {u}, W), u & L,u € W:

Then «(q') as follows: (A.b)” as ' didn’t change. (B)’ as no messages are produced. Thus
also (*.e).

(C.s)” as the only element added to L is u for which no notify” message exists as per
(G.e). (C.t)” as no state of a transition was changed.

From (D.s) no success” message existed. Thus (D.*)’.

(E.s)" as only L was changed. (E.t)” as no notify, messages were consumed and no state
of a transition was changed.

From (F.s) follows that no token? message can exist. Thus (F.*)".

(G.s)” as the only element added to L is u, one lock¥ message was consumed, no second
one exists as per (B), and no unlock) message was consumed. (G.t)" as no state of a
transition was changed and no ackL; was consumed.

(H.s)’ as the only element added to L is u for which no ackU" message exists as per (G.e).
(H.t)" as no state of a transition was changed.

(L.s)” as the fact that u was added to L makes up for the consumed lock? message. (I.t)’
as no state of a transition was changed.

From (J.s) follows that no message unlock? exists. Thus (J.*)’. Similarly from (K.s)
follows (K.*)". From (L.s) follows (L.*)".
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Terms only improved for (M.a)’, (M.c)’, (N.*)", (O.*)’, (P.*)’, (Q.a)’, and (R.a)’.

(M.b)" as the only element added to L is u for which (G.t) and (I.t) guarantee that
locking,(L',1,T) € ¢ such that s ¢ T\ (L' U {I}). Regarding (M.d)’, from (O.c) and
u € W follows that a loose¥, an ackUY, or an ackL message exists. If loose € ¢ (M.d)’,
(G.e) excludes the ackU¥ message, and if an ackL” message exists, (I.t) guarantees that u

is in an unproblematic state locking, (L', 1, T) for (M.d)’ as s ¢ T and thus via Lemma 5.2.1
[ #s. Thus (M.d)".

Case waiting(t, L, W) MAS waitings(t, L \ {u}, W \ {u}), u € L:
Then «(q’) as follows: (A.b)” as f didn’t change. (B)’ as no messages are produced. Thus
also (*.e).

(C.s)’ as the only element removed from W is u for which (I.e) guarantees that no notify”
message exists. (C.t)’ as no state of a transition was changed.

From (D.s) no success” message existed. Thus (D.*)’.

(E.s)” as the only element removed from W is u for which (I.e) guarantees that no loose"
message exists. (E.t)” as no notify), messages were consumed and no state of a transition
was changed.

From (F.s) follows that no token? message can exist. Thus (F.*)’.

(G.s)” as the only element removed from W is u which was in L before and for which per
(G.s) no lock? message exists. (G.t)" as no state of a transition was changed, the only
consumed ackL) message has p = s and v = u, and no locky message exists per (G.s).

(H.s)” as the only element removed from W is u for which (I.e) guarantees that no ackU¥
message exists. (H.t)" as no state of a transition was changed.

(Is)” as for both W and L the only element removed is u for which one ackL¥ message
was consumed and no second one exists as per (B). (I.t)’ as no state of a transition was
changed.

From (J.s) follows that no message unlock? exists. Thus (J.*)’. Similarly from (K.s)
follows (K.*)’. From (L.s) follows (L.*)’.

Terms only improved for (M.a)’, (M.c)’, (M.d)’, (N.*)’, (O.a)’, (P.*)’, (Q.a)’, and (R.a)’.

To show (M.b)’, assume some transition v exists such that locking, (L', [, T) € ¢ and
se T\ (LU{l}). If v = u then from (I.t) follows that s ¢ T and (M.b)” holds. For
v # u nothing relevant changed as only u was removed from W. Thus (M.b)’.
)

(O.b)” as the only element new to s* \ (W U {t}) is u for which (I.t) guarantees that

locking, (L',1,T) € ¢ with s & T. (O.c)’ as the only consumed message was ackL¥ and u
was removed from .
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Case waitingg(t, L, W) MAS waiting,(¢, L, W \ {u}), u ¢ L,u € W:

Then a(q’) as follows: (A.b)’, (B)’, (*.e)’, (C.*)’, (D.*), (E.*)", (F.*)’, (H.t)", (Lt)’, (J.*),
(K*)7, (L), (ML*), (NL*), (0.%)7) (P*), (Q.a)’, and (R.a)’ as in the previous case using
(H.*) instead of (I.*) and the different message name, leaving (G.s)’, (G.t)’, (H.s)’, and
(I.s)” to be proven here.

(G.s)” as the only element removed from W is u for which (H.e) guarantees that no lock®
message exists. (G.t)’ as no state of a transition was changed and no ackL; was consumed
in the step.

(H.s)” as the only element removed from W is u for which one ackU¥ message was con-
sumed and no second one exists per (B).

(I.s)” as the only element removed from W is u for which (H.e) guarantees that no ackL*
message exists.

{internalPassToken’, };{token’}

Case waiting, (¢, (0, )

A, empty,:

Then a(q’) as follows: (A.b)” as f didn’t change. (B)” as per (F.s) no token) message
existed before.

From (C.s) follows that no notify¥ messages existed. Thus (C.*)’. Similarly from (D.s)
follows (D.*)’. From (E.s) follows (E.*)’.

From (F.s) follows that no token” message existed before. For the new token’ message
(F.s)’ follows from the performed step. Thus (F.s)’. From (O.a) follows that firing,(T) € ¢
with s ¢ T. Thus (F.t)". From (L.s) follows that no newToken” message exists. Thus
(F.e).

From (G.s) follows that no lock¥ message existed before. Thus (G.*)’. Similarly from
(H.s) follows (H.*)’. From (Ls) follows (I.*)’. From (J.s) follows (J.*)". From (K.s)
follows (K.*)’. From (L.s) follows (L.*)’.

From (O.a) follows that ¢ is in a state firing;(7") with s ¢ 7. From (O.b) follows that all
u € s* \ {t} are in a state locking, (L',1,T) with s ¢ T. Thus (M.a)’ and (M.b)’.

Terms only improved for (M.c)’, (M.d)’, (N.b)’, (N.c)’, (N.d1)’, (N.d2)’, (N.d3)’, (O.*),
(P.*), (Q.a)’, and (R.a)’.

(N.a)” with the newly produced token’ message. O

After having shown that every step of the implementation implies an equivalent step
of the original net as well, the other direction is now shown: Every step of the net is
also possible in the implementation. However this does not hold for all implementation
states, but only for “normalised” implementation states, those which could be an initial
implementation state as given in Definition 5.2.1 or Definition 5.2.2.
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Definition 5.2.6
Let NV be a plain net and let Ay be the FSM based implementation of it.

Let n = |TN| + |SV].
The function §: P(SY) — Q4V is defined such that

The function § is well defined as the result must lie within @4~ and is thus unique. Also
applying { after § results in the identity.

Lemma 5.2.2
f(§(M)) =M.
Proof

Let M C P(SN).

Take any s € M. As § maps into Q4~, there must, according to Definition 3.2.2, be
some index i such that m;(F(M)) € Q4. As s ¢ TV and s € M, that element must have
7;(F(M)) = prenotify,. Take any s ¢ M. Again there exists some i with m;(F(M)) € Q4.
And from s ¢ M then follows that 7;(F(M)) = empty,. Similarly for every t € T" follows
that an ¢ exists for which m;(F(M)) = locking, (0, L,0). As F(M) has distinct values at
all these indices, the indices must be distinct, as n = |SN| + |T] the first n indices of
(M) are uniquely determined. Also 7,41(F(M)) = 0.

Thus for all s € M follows that prenotify, € F(M) and as no messages exists s € f(F(M)).

For all s ¢ M follows that empty, € (M) and as no transition is in firing,(T") for any T,
also s ¢ f(F(M)). O

Proposition 5.2.2
Let N be a plain net and let Ay be the FSM based implementation of it.

(i) F(My') = go™ and

(ii) If M [G)n M’, then there exists a sequence qo,qi, - .., G, of states, a sequence
I, I, ..., I,, and a sequence Oq,0s,...,0, such that g ﬂAN a1 12;—02>AN

. ILO'SAN In, S(M) = qo, §(M') = ¢y, and there exists a j, 1 < j < n such
that i # j = O; = 0 and O; = {fire’ | t € G}.

Proof
The allegedly existing sequence can be described uniquely by giving the performed input
and internal actions. To make the execution sequence unique, assume an arbitrary total
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order < on transitions.

The following uses the notation num;(X) to denote the i-th

element of a totally ordered set, in particular to select the i-th smallest transition according
to the just defined < and to select the i-th smallest place according to the global order
of places used in the construction of the FSM based implementation.

There exist x1, x9, 3, x4, and x5 such that the following sequence fulfils all conditions.

I, = {internalNotify® | s € °G}

I, = {notify;
I3 = {notify;

lockt

lockt

Q’N

+

[\o}
f—’Hf—’Hr—’Hf—’Hf—’Hr—’Hf—’H

internalLock’

success

internalLock’

success

success

={
{
= {
I, = {mternalFlre ’ te G}
{eo:
{
{

L€ (*G)",p=nmum ("t N°G)}
te(*G)*,p=numy(*t N°G)}

te (*G)*,p=num,, (*t N 'G)}
(*t)}

(*t)}
(°t)}

(*t)}

8= numg(’t)}

()}

S = numm('t)}
,§ = num,, (* t)}

(*1)}

't}

te(*G)"\ G,p=num("tN°G)}
te (*G)"\ G,p=numy(*tN 'G)}

te (*G)*\ G,p = num,,(*tN ’G)}
p € °G,t € num; (p* \ G)}

p € °G,t € numy(p® \ G)}

p € °G,t € num, (p® \ G)}
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I; = {internalPassTokeni

ted,se ’t}
Iy = {tokenlf9 teG,s= num1(°t)}
{ LlteGs= numg(’t)}

I, = {tokeni teG,s= numzs('t)}
I, = {internalDonet ‘ te G}
Iy = {nevaokenlf9 s € G'}
Finally, 5 = 0. U

There are two additional properties of the implementation that will be necessary to prove
correctness in Theorem 5.2.1. The first property is concerned with deadlocks, i.e. states
where no further activity is possible, which the implementation should not introduce. The
implementation must only deadlock in states which are related to states where a deadlock
was present in the original net. The second property does a similar thing for livelocks, i.e.
infinite sequences of unobservable activity. As the original net will be a plain net though,
the original net cannot contain any livelocks, and hence the implementation should not
include any either.

The implementation does not have a deadlock, if the original could have proceeded.

Proposition 5.2.3
Let N be a plain net and let Ay be the FSM based implementation of N. Let ¢ € Q4
with a(q).

If there exists an A such that f(q) A,y then there also exist I, O and ¢ such that
q ﬂ)AN ¢'. (Note that O does not need to have anything in common with A).

Proof
Assume no such O exists. Note first that also O = () is perfectly acceptable, so no internal
activity may occur either.

notify’ € ¢ would lead to some activity via (C.t). success’, € ¢ would lead to activity via
(D.t). loose’, via (E.t) or (C.t). token’ via (F.t). lock! via (G.s) or (J.s). ackU? via (H.s).
ackL! via (Ls), (G.s) or (J.s). unlock’, via (J.s). go’ via (K.s). newToken’ via (L.s). Thus
no message exists in q.

Also, there is no transition ¢ is in a state of firing;(7") for any 7. If T = °¢ there is
activity. Thus from (N.a) and the absence of messages there exists an s € *¢ \ T with

waiting,(t, L, W) € q. If W = 0 there is activity. Thus from (O.c) some messages exist
and there is a contradiction. Thus no transition ¢ in a state firing;(7") can exist in g.
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From f(¢) <y follows that there exists some G with (¢) [G)x . Now take t € G. Clearly
*t C f(q). From Definition 5.2.4 then for every s € °t either prenotify, € ¢, unlocked, € ¢,
locked,(u, L) € ¢ for some u and L, or firing,(T) € ¢ for some u and T If prenotify, € ¢
there is activity and firing, (7)) € ¢ is impossible as well. If unlocked, € ¢ then from (R.a)
and the absence of messages follows that Yu € s*3L',1, T locking, (L',1,T) cqnseT.
If locked,(u, L) € ¢ then from (P.a), (P.b), and the absence of messages follows that
Vu € s*3L 1, T. locking, (L', 1, T) = g\ s € T. Repeating these arguments for each s € *¢
it follows that locking, (L', [, *t) € ¢q. If | = L there is activity, thus / £ 1.

Then from (M.d) and the absence of messages follows that locked,(u, L') € ¢ with ¢t € L/
and u # t. From (P.c) and the absence of messages then locking, (L”, ', T') € q with
[ € L”. Assume I’ = | then together with L” # () follows from Lemma 5.2.1 that 7" = *u
and there is activity. Thus I’ # 1 and from Lemma 5.2.1 [ < ['.

Now consider a place p € *u. Per (M.a) follows that either unlocked, €q, locked,(. . .) € q,
or waiting,(...) € ¢. With (O.a) however, the latter possibility is a contradiction with
the fact that no firing,(...) € ¢.

From here on, the above arguments can be repeated, yielding a new [’ each turn, and
always strictly larger than the previous one. As N is finite however, at some point all
places are exhausted. Thus there is a contradiction with the assumption that no activity
is possible. O

The implementation does not have a livelock.

Proposition 5.2.4
Let N be a plain net and let Ay be the FSM based implementation of N. Let ¢ € Q4
with a(q).

. . . Iq: Io:
There exists no infinite sequence Iy, I, ... such that ¢ ﬂAN 2—’®>AN S
Proof
P In; Io; .
Assume an infinite sequence I, I5, ... such that ¢ 1—’®>AN 2—’®>AN -+ exists.

As no visible output is allowed while the sequence is executing, no fire! messages may be
produced. The same step producing the fire! messages however is the only step in which
go! messages are produced. Thus no step of the sequence may produce new go’ messages.

As N is finite and «(q) (B) holds, it follows that only finitely many go’ messages exist in
g. As the sequence is assumed to be infinite however, there must be an I; after which no
further go’ messages are consumed.

The only step producing loose* messages however consumes go’ messages. Again only
finitely many loose! messages exist, thus there must be some I; after which no further
loose’, messages are consumed. As all possibilities to produce an ackU?, or an ackL}, message
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require that a loose’ message is consumed, there is a point after which no further of these
messages is produced and some I after which no ackL! and no ackU’ is consumed.

Also the only step where a place enters its waiting, (¢, L, W) phase consumes a go’, message.
Thus there must be some [; after which no place enters its waitings (¢, L, W) phase. Only
finitely many places exist, and whenever a place enters its empty, phase, it exited from
a waiting,(t, L, W) phase. Thus there must be some I, after which no place enters its
empty, phase. As every place came from an empty, state when it enters its prenotify,
phase, there must be a some I,, after which no place enters its prenotify, phase. Thus
there must be some I, after which no place leaves its prenotify, phase. As the creation of
a notify’ message requires that s leaves its prenotify, phase there must be some I, after
which no further notify’, messages are produced and some I, after which no further notify’
messages are consumed.

After I,, as no place enters its empty, phase, no further token’, messages are produced.
Thus there is a I, after which no further token’ messages are consumed. After that point
no transition can enter its firing,(°t) state, as every transition must have at least one
preplace (otherwise N would not be contact free), and the firing,(7) phase starts with
T = (). If no transition enters its firing;(*¢) anymore there must be some I, when the last
transition leaves its firing,(*t) state and the last newToken’ message is produced. Thus
there is some point I; after which no further newToken! message is consumed.

After I; and I, no loose’, and no notify’ messages are consumed, thus a transition in a state
locking;(L,1,T) can not change the T' component any more. In particular no transition
can enter a state locking;(L,[,T) with [ # 1 and T # *t. Thus there is some [, after
which no transition leaves a locking; (L, [, T') state with [ # 1 and T' # *t. As leaving these
states and consuming loose’, messages are the only two possibilities of producing unlock;
messages, there is some point after which no further unlockﬁ, messages are produced and
some [, after which none are consumed any more.

As consuming unlock’, messages and leaving the prenotify, state are the only possibilities
for a place to enter its unlocked, state and both are impossible after I, and I, there must
be a point after which no place enters its unlocked, state any more. Thus there must also
be some I, after which no place leaves its unlocked, state.

Consuming unlock’ messages and leaving the unlocked, state of a place are the only
possibilities for a success’, message to be produced. Both are impossible after I, and I,,.
Thus there must also be some I, when no further success!, message is consumed.

As the only ways for a transition to enter a state of the form locking,(L, L, *t) are con-
suming a notify’ message or consuming a success’, message, this does not happen after I,
and /,. Thus there must be some point I, after which no transition leaves a state of the
form locking (L, L, *t). As lock! messages are only produced when leaving such a state,
no lock! messages are produced after [, and there is some I, after which no lock’ message
is consumed.

Thus no notify’ is consumed after I,, no success! is consumed after I, no loosel is
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consumed after I;, no token’ is consumed after I,, no lock’ is consumed after I, no ackU?
is consumed after I, no ackL! is consumed after I, no unlock’, is consumed after I,, no
gol, is consumed after I;, no newToken’, is consumed after I;. Thus there is a point after
which no messages whatsoever are consumed.

Furthermore no internalLock’ can be performed after I,, no internalDone’ can be per-
formed after I, no internalNotify® can be performed after I,, no internalPassToken® can
be performed after I,,,. Thus there is some point after which no step is possible anymore.

1270

Therefore no infinite sequence Iy, I5, ... such that ¢ == EIEA N A - exists. U

v
Given the automaton based description of how to encode arbitrary nets into a distributed
form, the following construction transforms those automatons back into nets, thereby
finishing the distributed implementation transformation. The transformation back to
nets proceeds in two separate steps, first the sequential FSMs representing the places and
transitions of the original net are transformed into nets, then the parallel composition
operator between state machines is replaced by a parallel composition operator between
nets.

In the following construction, the power of multi-labelled transitions will be useful — for
a short while — because there is no need to split up the parallel output of the automaton
in an unnatural way. Later, all the net implementations of the generated FSMs will be
combined again, and only singleton labelled transitions will remain. At that point, the
resulting net is a plain 7-net.

Definition 5.2.7
Let A be a serial FSM.

The net based implementation of A is the net Ny = (SN4, TNa FNa NplVa ¢Na) with
- SNA:{stateAq ‘ qEQA} U { iEZf‘},
0
TNA — quZO {} }

q——44
_ pNa stateAq,doququ,), (input,, do, ; 0. ),
state, ,/)

04,i,0,q">
{ stateAq, do,; 0.4) (Ao, ; 0 4> State, ) ‘ q>5aq i€ ZA}

- My = {stateAvqg,}, and
- ENA <d0q7i7o7q/) =0.

The set of input places of such a net is defined as J(N) = {

i€ ).
Also, the composition operator between state machines needs to be transformed into an
operator between nets.

Definition 5.2.8
Let N and N’ be two nets with clearly defined input places, i.e. nets produced by
Definition 5.2.7 or by application of this definition.
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Let I =J3(N)UJ(N).
The asynchronous parallel composition of the two nets, N||N’, is defined as the net
N||N' = (SNIN' TNIN' pNIN' pNINT pNIN'Y Gigh

NIV = gV 5,

— TNIN = N N

— MéVHN/ _ MO]V U Mévl, and

— NIN(1) = {EN(t) \ {i [ input; € I} ift € TV

N @)\ {i|input, € I} ifte TN’
The set of input places of the composition is defined as

J(N|N") =T\ {inputi FeTV. iceNt)vIeT ic EN/(t)}

Using the above definition, the net based implementation of an asynchronous parallel
composition of serial FSMs is defined as the asynchronous parallel composition of the net
based implementations of the composed FSMs.

The net based implementation of a parallel composition of FSMs can be understood as a
network of sequential machines in the sense of Definition 3.1.4 by adding the input, places
as buffer places also to the component which outputs to them.

The behavioural relation between the state machine composition and the net based im-
plementation thereof is very close, as a bijective function between automaton states and
reachable net states exists.

Definition 5.2.9
Let Ay, Ay, ..., A, be serial FSMs with pairwise matching action signatures, such that

their asynchronous parallel composition A is 1-safe.

Let Ny, Ny, ..., N, be the respective net based implementations. Let N be the asyn-
chronous parallel composition of the nets.

The function & : Q41 — P(S™M) is defined as

&(q) = {stateAim(q) ‘ 1<i< n} U {input, | 0 € m41(q)}

For markings M where in each net Ny, No,..., N, exactly one place of the form
state, . is marked, the function g : P(S™) — Q™I is defined such that

(V1 <i <ndq. m(g(M)) = q Astatey, , € M)
A st (8(M)) = {o | input, € M}
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Lemma 5.2.3
Let Ay, As, ..., A, be serial FSMs with pairwise matching action signatures such that

their asynchronous parallel composition A is 1-safe and such that 2}4” = (.

Let Ny, Ny, ..., N, be the respective net based implementations. Let N be the asyn-
chronous parallel composition of the nets.

Let M, M' be reachable markings of V. Let ¢, ¢’ be reachable states of A.

(i) 8(6(9)) = ¢

[i=

(i) &(g(M)) =M
(iii) &(q A”) Mév”
q?”

(v) ¢ —>AH ¢ = 6(q) Sn, 6(¢) V(0 =0A&(q) Sy, 6(¢))
(vi —>NH M’ = 3I. g(M) j—wm g(M’)

(vii) M ==y, M" = 3I. g(M) =S4, g(M')

i

)
)
)

(iv) (01 N“)
)
i)
)

Proof
(i): For each net N, state,, . € ®(q) and Vz. state,, , € &(q) = r = m;(q). Hence g
is defined for &(q).

Also for 1< < n, m(a(®(q))) = mi(q). Finally 7u1(8(8(q))) = Tus1(a)-

(ii): M is a reachable marking of Nj. From Definition 5.2.7 follows that exactly one
place of the from state,. . is marked for every 1 < i < n. Hence g(M) is defined. In
particular for every 1 < i < n, m(g(M)) = ¢; and hence state,, . € &(g(M)). Finally
input, € M < input, € &(g(M)).
(iii): Directly from Definition 5.2.7, Definition 5.2.8, and Definition 5.2.9.
(iv): From (iii) and (i).
(v): Consider first a singleton I = {a}.

{a};0

Assume ¢ 4 ¢’. There is a unique automaton A; with a € 2}4" U 24 where the
action is either input or inner action.

. : A . .
If a € %% then with X;" = () Definition 3.2.2 guarantees that a € m,,;(q) and Defini-
tion 5.2.7 produced a transition dom(q) 0,00,m:(q") which consumes a token from input; and
one from state,, . . Hence this transition is enabled in the marking ®(q) as all these

places are marked.

The transition produces a new token on state,, . and, using Definition 5.2.8, one token

on each place in {inputo ’ 0€ 0, N Zf” } Only one place of the form state,, , is marked
in &(q). Thus the postplace of this form is either a preplace or empty. All postplaces of
the form input, must be empty as well, as otherwise the step would violate the assumption
that A) is 1-safe.
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Furthermore, the label of do,., () , 0, x,(y) Which remains after all nets have been composed

is O, N Zg”, which, using Definition 3.2.2, equals O.

If a € 47 then Definition 5.2.7 produced a transition do, ().0,00,m:(q) Which has the single
preplace state 4, - (q)- Hence this transition is enabled in the marking &(q).

The rest of the argument proceeds as above.

Now consider a non-singleton I. As the components have matching action signatures,
no two components share input or output actions. Thus pre- and postplaces of all fired
transitions are distinct and they can all fire in parallel.

(vi) and (vii):

As already noted above, in a reachable marking exactly one place of the form state,, ,
will be marked in each net N;. In particular this holds for M and M’, thus g is defined
for both.

Instead of considering a whole step of N consider first a single transition firing.

Assume that M [{t})ny, M'. Let i be the index of the net where ¢ originated.

If ¢ has some preplace of the form input,, then per Definition 5.2.7, ¢; {ay:0;, 4, ¢, for some

O; (possibly empty). Also ¢ will have one other preplace, namely statey, ,.. Furthermore

¢ will have the postplace state, , and from Definition 5.2.8 also one postplace input, for

each 0 € 0; N 221, Note that O; = ¢V: (t) and using Definition 5.2.8 (Vi (t) = O; N zg‘;”,

which is the O visible in the net step or the empty set in case of a 7-step.

As all preplaces of ¢ are marked in M, all postplaces are marked in M’, and Z?” =10

Definition 5.2.9 enforces that m;(g(M)) = ¢, a € m1(g(M)), m(g(M')) = ¢, and
Tnsr1(g(M") = 7rn+1(g(M))—{a}+OiﬂZf”. Also a € X4 and ¢Ni(t) = O and hence with
all other components non-moving, the composition can perform g(M) MAH g(M’).

If ¢ has no preplace of the form input,, then per Definition 5.2.7, ¢; M)Ai q; with

A - .
a € X4 and a € ¥;'. The transition ¢ will have exactly one preplace, namely statey, ..
All considerations about postplaces and output are as above.

As all preplaces of ¢t are marked in M and unmarked in M’, Definition 5.2.9 enforces

that m;(g(M)) = ¢;, m(g(M')) = ¢/. Hence with all other components non-moving, the
{a};0 /

composed automaton can perform g(M) =4 g(M’).

If a set of transition G is firing, no two transitions share a common pre- or postplace as
they are independent. Thus the respective state machine components consume different
input messages and can proceed in parallel. O

One other fact is still missing, namely that the given implementations are indeed dis-
tributed. Every net based implementation as defined in this thesis is distributed.

62



5.2 How It Does Work

Lemma 5.2.4
Let N be a net which has been produced by Definition 5.2.7 or by application of
Definition 5.2.8.

N is distributed.

Proof
First case: N has been produced by Definition 5.2.7 from an automaton A.

Every transition always consumes one token from a place of the form state, , and produces
a token on one such place. Initially there is exactly one place of that form marked. Thus
M e M) = |[Mn {stateAq ‘ q€ QA}| = 1. As every transition consumes one token
from such a place, no two transitions can ever fire in parallel. Hence the trivial distribution
locating all elements on the same location makes the net distributed.

Second case: N has been produced by Definition 5.2.8 and is actually of the form N'||N".

By induction over the application depth of Definition 5.2.8, it can be assumed that both
N’" and N” are distributed by distributions 2’ and 2" respectively.

Without loss of generality it can be assumed that 2’ and 2” map to disjunct sets of
locations. A valid distribution for N'||N” is then 2’ U 2" where functions have been
understood as relations. To show that this is indeed a correct distribution, all transitions
must be co-located with their preplaces and every pair of concurrently firing transitions
must not be co-located.

Assume a transition t and its preplace p are not co-located. As the only entries in the
flow-relation of N'||N” which were not present in N’ or N” go from transitions to places
the preplace relation between ¢ and p must have been present in N’ or N”, which violates
the assumption that the respective net is distributed.

Assume two transitions ¢ and u fire in parallel. If they both belong to the same net, N’ or
N", then that net is not distributed, violating the assumptions. If they belong to different
nets they are not co-located as 2’ and 2” map to disjunct sets of locations. O

Putting it all together, the main theorem can finally been proven.

Theorem 5.2.1
Let N be a plain net. Let N’ be the net based implementation of the FSM based
asynchronous implementation of N. Let N” be the net N’ where every label of the
form {fire’} has been replaced by the label {t}.

Then N” is distributed and completed step trace equivalent equivalent to N.

Proof
N' is distributed as per Lemma 5.2.4. As this property is independent of labelling, so is
N".
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Let A be the FSM based asynchronous implementation of V.
“CST(N") C CST(N)”: Assume ajasas...a, € CST(N") and a, # 0 and a,, # 0.
Then per definition M “2222=2n o N[ for some M.

Undoing the renaming and applying Lemma 5.2.3 one obtains that A can perform a
sequence of actions where the only visible outputs are of the form {fire’ | ¢ € a;} in correct
order and arrives at g(M).

From Proposition 5.2.1 then follows that M5y~ - %y f(g(M)) and thus
ajasas . . .a, € CST(N).

Now assume that ajagas...a,0 € CST(N”). Then per definition MJ" =2%=tn 0, N/
for some M such that M s and M —zAHNn for all A.

Using the reasoning above, M 5y -+« =Sy f(g(M)).

Assume that §(g(M)) —5y. Then from Proposition 5.2.3 follows that g(M) ﬂA”

for some I and O. If O = () then Lemma 5.2.3 leads to M ——x», and if O # ()
then Lemma 5.2.3 leads to M iwu both of which violate the assumptions. Hence
f(g(M)) -2y and as N is a plain net also f(g(M)) “>y and arasas . . . a,0 € CST(N).

Now assume that ajasas . ..a,0 € CST(N"). Then from Lemma 5.2.3 follows that A} can
reach a state where an infinite sequence of moves without output is possible, contradicting
Proposition 5.2.4. Thus no such trace can exist in CST(N").

“CST(N) C CST(N")": Assume ajasas. . .a, € CST(N) and a, # 0 and a,, # 6.
Then per definition M} 2222228 0 M for some M.

Then via Proposition 5.2.2 A can perform a sequence of state transitions where the only
visible outputs are of the form {fire’ | ¢ € a;} in correct order and arrives in the state

3(M).
From Lemma 5.2.3 follows that N’ can perform MZ" e’ | tear}ifive | tcan} S(F(M)).
Via the renaming then MY 225 v, &(F(M)) and ajaqa; . .. a, € CST(N").

Now assume that ajasas...a,0 € CST(N). Then per definition M ==2222=28 o M for
some M such that M -y and M -2y for all A.

As above, A can reach §(M) while producing the correct outputs. From Proposition 5.2.4
follows that if A continues from §(M) by performing steps without output, it will ul-
timately reach a state ¢ where it cannot perform any more silent moves. From Propo-
sition 5.2.1 follows that f(¢) = f(§(M)). Furthermore from Lemma 5.2.2 follows that

f(§(M)) = M.

From Lemma 5.2.3 follows that N’ can perform M7’ {fire’ | tcay}--{fire’ | t€an} N 6(q).
Via the renaming then MY ===y, &(¢). And from the same Lemma 5.2.3 follows
that N’ and N” cannot perform any silent moves from &(q).
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Now assume ®(g) —=y» for some A # (. Then N’ can proceed with {fire’ | t € A}
and from Lemma 5.2.3 follows that A could proceed via ¢ Ifire | fed 4, for some I.
But then Proposition 5.2.1 shows that N could have proceeded via f(q) A, v and using
f(q) = M there is a contradiction to the assumption that it cannot. Thus &(q) -

Hence ajaqa;z . . .a,0 € CST(N").
Finally no trace ending in § can exist in CST(N), as NN is plain. O
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6 Conclusion

6.1 Discussion

This thesis has shown that all finite plain 1-safe Petri nets can be implemented in a
distributed fashion while preserving behaviour up to step trace equivalence. This section
discusses some possible interpretations of this result.

First note that of the three restrictions imposed upon the original net, only one is signif-
icant. l-safety can be ensured by introducing co-places in a first step. Plainness can be
introduced by relabelling all transitions. Undoing that relabelling after the implementa-
tion has been generated should produce a net equivalent to the non-plain original.

The restriction to finite nets however is a serious limitation, which can not be solved
trivially due to various possibilities for livelock. The simplest case is just an infinite set of
transitions of which each has a single preplace which is marked initially. Then the protocol
given in Section 5 makes infinitely many internalNotify® actions possible in sequence. This
livelock is artificial however, as it only occurs due to voluntary interleaving of all these
actions. But even if completed step trace equivalence could somehow be mended not
to detect these kind of “parallel” livelocks, more serious cases exist, due the following
problem.

The implementation is correct because step trace equivalence does allow the system to
perform steps in sequence which were parallel in the original. This fact could be seen as
a violation of the usual intuition. Usually, when including the interleavings of parallel
actions into the permissible traces of a system, one assumes that such interleavings occur
due to imperfection in timing. As the concept of “same point in time” is dubious in
distributed systems anyway, this only seems natural. However, the implementation given
in this thesis uses these interleavings in a different way. Actions which were independent
before can occur in strict sequence in some runs of the implementation. This difference
becomes apparent if one considers the causal structure of actions. Two actions which
were parallel in the original system are never causally dependent upon each other. In the
implementation such a dependency can arise spontaneously however.

Consider the net in Figure 4.5 and the step trace {v}{t}. In the original net, no token
was passed from ¢ to v or vice versa, the two transitions fired causally independent. In the
implementation however, the following scenario can unfold. u sends a lock; to p which
subsequently grants the lock to u. Then v sends a lock; to ¢ which grants the lock to v.
Then t attempts to lock p but receives no immediate answer as p is locked to u. Then
u tries to lock ¢ but also receives no immediate answer as ¢ is locked to v. Then v fires,
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consuming the token on ¢, which in turn produces a loose; message. This message then
causes u to release its lock on p, which subsequently grants the lock to ¢ which finally
fires. This firing of ¢ is causally dependent on the firing of v. Technically this can be
shown by tracing the ancestry of the tokens finally consumed by ¢ and showing that some
of them stem from the tokens produced by v.

Some cosmetics can be applied by splitting the firing of transitions into an invisible part
which handles the protocol with the preplaces and only then performing the visible output,
thus making the firing of ¢t again causally independent of the firing of v. However these
cosmetics cannot solve the underlying problem that ¢ is causally dependent upon the
token initially placed on g. While this may seem harmless in the example, and poses no
problem for finite Petri nets, consider an infinite chain of transitions as if Figure 4.5 had
been repeated downwards. Then infinitely long causal chains can evolve, leading to a true
sequential livelock while they unravel.

In practice however, infinite systems do not occur. Even long causal chains can only occur
if a long chain of transitions in direct conflict (two transitions are both enabled and share
a common preplace) existed in the original net. The garbling of the causal structure of
the original system should not matter in practice either, as most environments will not
care whether two actions have been performed in sequence due to imperfections in timing
or due to true causality.

Also, if Petri net model a real system, it is often possible to substitute profound al-
gorithms where the net employed non-determinism. The most interesting place for this
transformation in the construction given in this thesis is the production of a success? mes-
sage after a place receives an unlock’ message. While all choices for u are correct as per
Theorem 5.2.1, some algorithms might lead to better performance in practice. Possible
options include preferring the longest waiting transition (suggested by [5]), the transition
which already holds the most locks, or the transition which has the least remaining locks
to acquire. The latter two options correspond to a static priority over all transitions,
whereas the first option can be implemented by saving the set of waiting transitions in a
queue of some sort.

On the theoretical side, this thesis has shown that arbitrary behaviours can be imple-
mented distributedly under completed step trace equivalence and thus under all coarser
equivalences as well. It is an interesting question which equivalence relations allow
distributed implementations and where in the linear-time branching-time spectrum the
boundary for distributed implementability lies. This thesis has removed a part of the
grey area on the coarse side, limiting the position of the boundary to be not coarser
than completed step trace equivalence and, with [7], not finer than step readiness equiv-
alence. Also, the present thesis hints that causality can not be preserved in a distributed
implementation, while parallelism can.

Additionally this thesis proposed a new model of asynchronous systems, which is closely
related to a certain class of distributed Petri nets, but allows for a more compact repre-
sentation of many distributed algorithms.
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This thesis has also shown, to me at the very least, that the proof method employed here
(and also in [8] and [7]) will be inadequate if the implementations of Petri nets include
any more complexity. My motivation to employ the Isabelle/HOL tool was mainly fuelled
by the anticipation of the proof of Proposition 5.2.1. Unfortunately it was not possible to
verify that proof using Isabelle/HOL within the given time frame. Indeed I found using
Isabelle/HOL is much more time consuming than I assumed initially due to two problems.
First, the automated proof and term simplification methods within Isabelle/HOL take
impractical amounts of time if the terms get large, as it is the case with the combination
of all terms of the main invariant . That problem will clearly be solved within a few
years, if not by better algorithms, then by faster hardware. Second, due to the formality
of formal tools, one feels pressed to proof trivialities (usually turning out not be trivial at
all if considered in a strict formal setting), which distracts from the main line of proof.

Instead of hoping for better tool support in the near future, it might be possible to de-
sign protocols like the one in this thesis using a synchronous specification language, say
CCS, and then refine it towards asynchrony stepwise, while also refining the invariants. T
designed the construction directly in an asynchronous model however, so a synchronous
version did not seem natural. Also I feel that designing algorithms directly in an asyn-
chronous model will often lead to a higher grade of parallelism then a refinement of a
synchronous algorithm usually yields. Using results like the one in this thesis however, it
might at some point not be necessary any more to implement parallelism “by hand” at
all. Instead well understood and performant protocols might be available for all practical
problems.

6.2 Related Work

The question whether, and if how, it is possible to implement synchronous system de-
scriptions in a distributed and asynchronous fashion has been asked and answered in a
variety of ways before this thesis already.

In [13], Lynch has collected quite a lot of impossibility results about distributed systems,
many of which concern asynchronous systems. In [7], van Glabbeek, Goltz and myself
have answered the question negatively for the model of Petri nets, if branching-time is
assumed, as already discussed in Section 4. In [12], Hopkins also identifies some syn-
chronous behaviours which can not be implemented in a distributed fashion, again using
Petri nets but employing a different notion of distributed.

The works [1], [2], [18], [16], and [10] by de Boer, Gorla, Klop, Nestmann, and Palamidessi
compared asynchronous variations of the process algebras CCS and ACP and the 7-
calculus with each other and also with the original versions of the calculi. They then at-
tempted to implement seemingly less asynchronous variants in more asynchronous ones.
Depending on the used equivalence relation and the exact nature of the modifications
applied to the process algebra, they reached both impossibility results and working im-
plementations. These process algebra centric works have the advantage that their imple-
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mentations can use the expressive power process algebras provide. On the other hand,
the high level of abstraction sometimes hides synchronous features in the depths of the
operator semantics, like the atomic choice happening when multiple receivers exist for a
single message.

In [3], Fischer and Janssen identify systems which behave equivalently, up to failures
semantics, whether they are implemented using synchronous or asynchronous communi-
cation, with the goal of using synchronous specifications to build asynchronous systems.
In [21], Rabin and Lehmann give a randomised algorithm which solves the dining philoso-
phers problem in an asynchronous and symmetric fashion. There are quite a lot of other
results which solve one or the other real-world problem in a distributed and asynchronous
fashion, many of which have been collected by Lynch in [14]. Indeed many methods
employed in practice to build asynchronous systems are often neglected in theoretical
literature which includes impossibility results, in particular the possibility of using a ap-
proximately correct local clock and thus timeouts and the possibility of using probabilistic
choices.

Compared to models in the literature, asynchronously composed state machines as defined
in this thesis are one of the most asynchronous models proposed. They are related most
closely to the three following models.

In [22] W. Reisig introduced networks of sequential machines. While the differences
have already been outlined in Section 3, I omitted a detail there to keep the implicit
assumption that tokens do not carry any meaningful information implicit. In particular I
dropped the free-choice condition on the grounds that otherwise a sequential component
could not react differently on different input. When a Petri net models the control flow
of a complicated system however, it is often the case that tokens do not just carry the
information of their presence but additional data. In particular, where the Petri net only
contains a non-deterministic and free choice, the real system might employ an algorithm
which decides differently depending on the concrete information carried in the token. If
a network of sequential machines as defined by Reisig behaves correctly, this correctness
is independent of those hidden data and algorithms. The present thesis however needs
an explicit representation of the data and the algorithms relevant to the implementation
protocol to show its correctness.

Another model for asynchronous systems are the IO-Automata of Lynch and Tuttle [15].
They are however not asynchronous according to my intuition. While the sending of a
message can only be controlled by a single component and the sender can not be blocked
due to input enabledness of all receivers, the model ignores the possibility of message
overtaking. The system sketched in Figure 6.1, if composed using IO-Automata semantics,
cannot reach the error state, while it can do so if composed using asynchronous state
machine composition. A similar problem also exists in the model used for example by
Gouda, Chow and Lam in [11], which they call “communicating finite state machines”; as
they couple sequential machines using FIFO-buffers, again making some forms of message
overtaking impossible.

69



6 Conclusion

{};{a}

{516} {034} {a}:{}
O O QO error

Figure 6.1: Two sequential components which, depending on the composition operator,
sometimes reach the undesired state labelled “error”

Considering all results about asynchronous systems, the overall picture is far from clear.
Apart from countless detailed ones the following large questions remain:

— How do the various models of asynchronous systems relate? Does asynchrony carry
over into, for example, Petri net semantics of asynchronous process algebras.

— Which fundamental boundaries between the different shades of asynchrony exist and
where exactly are they?

— Which models of asynchronous systems are relevant in practice?

— Which equivalence relations are best suited to describe the behaviours an asyn-
chronous system or a component thereof can exhibit?

— How to transform the knowledge about asynchronous systems into practical tools
like compilers or hardware synthesisers?

— How to build, verify and test large asynchronous systems?

— Which is the grand unifying theory answering all these questions?

70



Bibliography

[1]

2]

3]

4]

[5]
[6]

17l

18]

19]
[10]

Frank S. de Boer and Catuscia Palamidessi. Embedding as a tool for language
comparison: On the CSP hierarchy. In J.C.M. Baeten and J.F. Groote, editors, Proc.
2nd International Conference on Concurrency Theory (CONCUR’91), Amsterdam,
The Netherlands, volume 527 of LNCS, pages 127-141. Springer, 1991. 68

Frank S. de Boer, Catuscia Palamidessi, and Jan Willem Klop. Asynchronous com-
munication in process algebra, 1992. Extended abstract. 68

Clemens Fischer and Wil Janssen. Synchronous development of asynchronous sys-
tems. In Proc. 7th International Conference on Concurrency Theory (CONCUR’96),
pages 735-750, London, UK, 1996. Springer. 69

Rob J. van Glabbeek. The linear time — branching time spectrum I: The semantics
of concrete, sequential processes. 3

Rob J. van Glabbeek. Personal communication. 67

Rob J. van Glabbeek. The linear time - branching time spectrum II. In Proceedings
of the 4th International Conference on Concurrency Theory (CONCUR’93), pages
66-81, London, UK, 1993. Springer-Verlag. 3

Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke. On synchronous
and asynchronous interaction in distributed systems. Technical Report 2008-04,
TU Braunschweig, 2008. Extended abstract in Proceedings 33rd International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2008), Torun,
Poland, August 2008 (E. Ochmanski & J. Tyszkiewicz, eds.), LNCS 5162, Springer,
2008, pp. 16-35. 4, 7, 21, 23, 67, 68

Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke. Symmetric and
asymmetric asynchronous interaction. Technical Report 2008-03, TU Braunschweig,
2008. Extended abstract in Proceedings 1st Interaction and Concurrency Experience
(ICE’08) on Synchronous and Asynchronous Interactions in Concurrent Distributed

Systems, to appear in Electronic Notes in Theoretical Computer Science, Elsevier.
13, 68

Ursula Goltz. Personal communication.

Daniele Gorla. On the relative expressive power of asynchronous communication
primitives. In L. Aceto and A. Ingoélfsdottir, editors, Proc. of 9th Intern. Conf. on
Foundations of Software Science and Computation Structures (FoSSaCS ’06), volume
3921 of LNCS, pages 47-62. Springer, 2006. 68

71



Bibliography

[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

[19]

[20]

[21]

22]

72

Mohammed G. Gouda, C. H. Chow, and S. S. Lam. Livelock detection in networks
of communicating finite state machines. Technical Report 84-10, University of Texas,
Austin, Department of Computer Science, 1984. 69

Richard P. Hopkins. Distributable nets. In Advances in Petri Nets 1991, volume 524
of LNCS, pages 161-187. Springer, 1991. 68

Nancy A. Lynch. A hundred impossibility proofs for distributed computing. In Proc.
of the 8th ACM Symposium on Principles of Distributed Computing (PODC), pages
1-28, New York, NY, 1989. ACM Press. 68

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996. 69

Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2:219-246, 1988. 69

Uwe Nestmann. What is a ‘good’ encoding of guarded choice? Information and
Computation, 156:287-319, 2000. 68

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. 6

Catuscia Palamidessi. Comparing the expressive power of the synchronous and
the asynchronous pi-calculus. In Conference Record of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’97), pages
256—265. ACM Press, 1997. 68

Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut fiir Instrumentelle
Mathematik, Schriften des TIM Nr. 2, 1962. 4

Vaughan R. Pratt. The pomset model of parallel processes: Unifying the temporal
and the spatial. In Seminar on Concurrency, Carnegie-Mellon University, pages
180-196, London, UK, 1985. Springer. 4

Michael O. Rabin and Daniel J. Lehmann. On the advantages of free choice: A
symmetric and fully distributed solution to the dining philosophers problem. In
Anthony W. Roscoe, editor, A Classical Mind: FEssays in Honour of C.A.R. Hoare,
chapter 20, pages 333-352. 1994. An extended abstract appeared in Proceedings of
POPL’81, pages 133-138. 69

Wolfgang Reisig. Deterministic buffer synchronization of sequential processes. Acta
Informatica, 18:115-134, 1982. 13, 14, 69



A Appendix

The following contains formal proofs in the Isabelle/HOL system for some of the con-
structions and lemmas used in this thesis.

theory DrahflowTools
imports Main Multiset
begin

Used for top-down proof development and as a filler for left-out parts.

axioms proofHole: P

lemma eq-cong-fun-app: [z = y] = fz = fy by simp
lemma directContradiction: [- P = False] = P by blast

lemma ballE-in: [Vz€A. Q z;z € A; Qv = P z] = P = by blast

lemma ballE-in-double: [Vz€A.VyeB. Qry,z € A;y € B; Qey— Pzyl—=— Puzy
by blast

lemma bexToEz: [3z € A. P 2] = Jz. P z by blast

lemma some-connect: AP Q. [3z. P z; 3z. Q z; (SOME z. P z) = (SOME z. Q z)] = J=.
PxNQz

apply (rule-tac v = (SOME z. P z) in exl)

apply (rule congI)

apply (blast intro: somel-ex)

apply (rule-tac s = (SOME z. Q z) and t = (SOME z. P z) in ssubst, assumption)

apply (blast intro: somel-ex)

done

N N N

lemma nolntersection-superset: [A N B = {}; C C A] = C N B = {} by blast
lemma diffImplSubset: A — B C A by blast
lemma nolntersection-subsetDiff: [AN B = {}; A C C] = A C C — B by blast

lemma finiteMapUnion [elim]: [finite S; Ns. s € S = finite (f s)] = finite (Us € S. fs)
by simp

lemma list-fizlen-expl: 0 < length s = xs = (hd xs) # (tl zs) by force
lemma list-fizlen-expll: length s = 1 — zs = [hd zs]

apply (subgoal-tac length s = Suc 0)
prefer 2 apply arith
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apply (subgoal-tac I a as. s = a # as A length as = 0)
prefer 2 apply (clarsimp simp: length-Suc-conv)
by clarsimp

lemma list-fizlen-expl2: length s = 2 = xs = [hd zs, hd (tl zs)]
apply (subgoal-tac length ts = Suc (Suc 0))
prefer 2 apply arith
apply (subgoal-tac Fa b bs. xs = a # b # bs A length bs = 0)
prefer 2 apply (clarsimp simp: length-Suc-conv)
by clarsimp

lemma semigroup-add.foldl-abelian-reverse:
[semigroup-add add; ¥ a b. add a b = add b o] =
foldl add zero (zs) = foldl add zero (rev xs)

apply (induct-tac zs, simp)

apply (rename-tac z list)

apply simp

apply (erule-tac s = foldl add zero list in subst)

by (rule semigroup-add.foldl-assoc, assumption)

lemma predicate-true-if-mem: x € S = S z by (simp add: mem-def)
lemma mem-if-predicate-true: S © = = € S by (simp add: mem-def)

lemma predicate-if-in-lambda: © € (Az. P z) = P z by (simp add: mem-def)

lemma set-ops-to-predicate.simps: shows
St = (SUT)z and
Te = (SUT)zand
[Sz; Tz] = (SN T)z and
r =y = (insert y S) z and
Sz = (insert y S) z
by (blast intro: predicate-true-if-mem mem-if-predicate-true)-+

definition powermultiset :: 'a set = ('a multiset)set
where powermultiset S = {M. set-of M C S}

primrec list-times :: ('a set)list = ('a list)set where
list-times [ = {[]} |
list-times (z # xs) = {l. hd l € x N tl] € list-times xs A length | = Suc (length xs)}

primrec list-times-compr :: ('a)list = ('a = b set) = (b list)set where
list-times-compr [| f = {[]} |
list-times-compr (z # zs) f =

{l.hd 1 € fz At € list-times-compr zs f A length | = Suc (length zs)}

definition multiset-of :: 'a set = 'a multiset where
multiset-of S = Abs-multiset (A\z. if z € S then 1 else 0)
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end

theory PetriNet
imports Main Multiset DrahflowTools
begin

types ('e,’act)petrinet-repr =
(‘e set)x (e set)x (e x 'e)setx('e = 'act)x('e set)x('act set)

definition wellformed-petrinet :: (‘e,’act)petrinet-repr = bool where
wellformed-petrinet N =
let (S, T, F, 1, Mo, 7Set) = N in (
(Vsz. (s,z) e FANseS —2zeT)A
VMtz. (t,z) e FANLeT — 1z €S8)A
—“(Fz.z2€eSNT)A
(Vs.s € Mg — s € 95)

)

typedef (’e,’act)petrinet =
{N :: ('e,’act)petrinet-repr. wellformed-petrinet N}

apply (rule exl[where = = ({s}, {}, {}, (As. a), {}, {})])
by (simp add: Collect] wellformed-petrinet-def Let-def )

definition places :: ('e,’act)petrinet = 'e set
where places N = fst (Rep-petrinet N)
definition transitions :: (‘e,’act)petrinet = 'e set
where transitions N = fst (snd (Rep-petrinet N))
definition label :: (e,’act)petrinet = (e = 'act)
where label N = fst (snd (snd (snd (Rep-petrinet N))))
definition flow :: (‘e,’act)petrinet = (‘ex’e) set
where flow N = fst (snd (snd (Rep-petrinet N)))
definition initial :: ('e,’act)petrinet = (e set)
where initial N = fst (snd (snd (snd (snd (Rep-petrinet N)))))
definition silent :
(e, act)petrinet = 'act set
where silent N = snd (snd (snd (snd (snd (Rep-petrinet N)))))
definition static ::
("e,’act)petrinet = (‘e set)x (‘e set)x(('ex’e)set)x (‘e = 'act)
where
static N = let (S, T, F, I, My, 7Set) = Rep-petrinet N in (S, T, F, 1)

definition Net ::
('e set)x (e set)x (("ex’e)set)x (‘e = 'act)x('e set)x('act set) =
("e,’act)petrinet
where [simp]|: Net tuple = Abs-petrinet tuple
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definition preset :
('e,’act)petrinet = 'e = 'e set
where preset N z = {y. (y, z) € flow N}
definition postset ::
('e,’act) petrinet = ‘e = e set
where postset N z = {y. (z, y) € flow N}

definition presetSet ::
('e,’act)petrinet = 'e set = e set
where presetSet N X = {y. 3z € X. (y, z) € flow N}
definition postsetSet ::
('e,’act)petrinet = 'e set = e set
where postsetSet N X = {y. 3z € X. (z, y) € flow N}

definition step :
(e, act)petrinet = 'e set = ‘e set = 'e set = bool
where

step NMq, G My =
(G C transitions N) N G # {} A
(Vt € G. preset Nt C My N (M1 — preset N t) N postset Nt = {}) A
VMte G.VueG. t#u—

preset N ¢t N preset N u = {} A postset N t N postset N u = {}) A

(Mg = (M — presetSet N G) U postsetSet N G)

inductive-set reachable :: ('e,’act)petrinet = ('e set)set
for N :: ('e,’act)petrinet where
reachable-start: initial N € reachable N
| reachable-step: [M1 € reachable N; 3 G. step N M1 G My = Mo € reachable N

definition plain :: (e,’act)petrinet = bool where
plain N = VYt € transitions N. label N t ¢ silent N A
(Vu € transitions N. (label N t = label N u) — (t = u))

definition 7Plain :: ('e,’act)petrinet = bool where
TPlain N =Vt € transitions N. YV u € transitions N.
label N t = label N u —
(silent N (label N t)) V
(silent N (label N u)) V

(t = u)

definition contactFree :: ('e,’act)petrinet = bool where
contactFree N =
VM € reachable N. V't € transitions N. preset Nt C M —
(M — preset N t) N postset Nt = {}

definition contactFreeStep ::
(e, act)petrinet = 'e set = ‘e set = 'e set = bool
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where
contactFreeStep N M1 G My =
(G C transitions N) A G # {} A
(Vt € G. preset Nt C My) A
(Vte G.Vu € G. t # u —> preset Nt N preset N u = {}) A
(Mo = (M, — presetSet N G) U postsetSet N G)

lemma stepImplContactFreeStep: [step N M1 G Ms] = contactFreeStep N M1 G Mo
by (simp add: contactFreeStep-def step-def)

lemma contactFreeStep-lemmal:

[(M — PreT) N PostT = {}; PreT C M; PreU C M; PreT N PreU = {}] =
PostT N PreU = {}

by blast

lemma contactFreeStep Valid:

[contactFree N; M1 € reachable N; contactFreeStep N M1 G My] = step N M1 G Mo
apply (unfold contactFree-def, unfold contactFreeStep-def)
apply (subgoal-tac V't € transitions N. preset Nt C M1 —

(M1 — preset N t) N postset N t = {})

prefer 2 apply blast
apply (unfold step-def)
apply (rule conjI, blast)
apply (rule congl, blast)
apply (rule conjI, rule balll)

apply (rule congl, blast)

apply (erule conjE)+

apply (subgoal-tac t € transitions N, simp)

apply (rule set-mp[where A = G], assumption+)
apply (rule congI)

prefer 2 apply simp
apply (rule balll)+
apply (rule impl, rule conjl, simp)

The interesting part of the proof follows.

apply (erule conjE)+
apply (subgoal-tac step N My {t} (M1 — preset N t U postset N t))
prefer 2
apply (unfold step-def)
apply (rule congl, blast
apply (rule conjI, blast
apply (rule conjl, simp)
apply (erule ballE-in[where x = M|, assumption)
apply (subgoal-tac t € transitions N, simp)
apply (rule set-mp[where B = transitions N and A = G|, assumption+)
apply (simp add: presetSet-def postsetSet-def preset-def postset-def)

[1]
)
)
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apply (subgoal-tac (M1 — preset N t U postset N t) € reachable N)
prefer 2
apply (rule reachable-step[where M, = M|, assumption)
apply blast

apply (thin-tac G # {})
apply (thin-tac step N My {t} (M, — preset N t U postset N t))

apply (thin-tac Mo = My — presetSet N G U postsetSet N G)

apply (subgoal-tac ((M1 — preset N t U postset N t) — preset N u) N postset N u = {})
apply (rule-tac A = (M, — preset N t U postset N t) — preset N u and B = postset N u
and C' = postset N t in nolntersection-superset, assumption)
apply (subgoal-tac postset N t N preset N u = {})
apply (rule-tac A = postset N t and B = preset N u in nolntersection-subsetDiff ,
assumption)
apply blast
apply (subgoal-tac preset N u C M1 — preset N t)
apply (erule-tac z = t and Q = M. VueG. t # u — preset Nt N preset N u = {}
in ballE-in, assumption)
apply (erule-tac z = v and Q = Au. t # u — preset N t N preset N u = {}
in ballE-in, assumption)
apply (erule impE, assumption)
apply (rule-tac M = M, and PreT = preset N t in contactFreeStep-lemmal)
apply (erule-tac z = t and A = transitions N in ballE-in, blast)
apply (erule-tac ¢ = t and A = G in ballE-in, blast)
apply blast
apply (erule-tac z = t and A = G in ballE-in, simp)
apply assumption
apply (erule-tac z = v and A = G in ballE-in, simp)
apply assumption
apply assumption
apply (thin-tac M1 € reachable N)
apply (thin-tac ¥ M €reachable N. Y t&transitions N. preset Nt C M —
(M — preset N t) N postset Nt = {})
apply (thin-tac ¥V tEtransitions N. preset Nt C M1 —
(M1 — preset N t) N postset Nt = {})
apply blast

apply (subgoal-tac preset N u C (M1 — preset N t U postset N t))
apply (erule-tac x = (M, — preset N t U postset N t) in ballE-in, assumption)
apply (erule-tac z = u and
Q = M\u. preset N u C M, — preset N t U postset Nt —
((My — preset N t U postset N t) — preset N u) N postset N u = {}
in ballE-in, blast)
apply (erule impE, assumption)
apply assumption
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apply (thin-tac ¥ M €reachable N. ¥ t&transitions N. preset Nt C M —
(M — preset N t) N postset Nt = {})
apply (thin-tac ¥V t€transitions N. preset Nt C My — (M — preset N t) N postset Nt = {})
apply (erule-tac x = t and Q = \t. VueG. t # u — preset N t N preset N u = {}
in ballE-in, assumption)
apply (erule-tac © = v and @ = Au. t # u — preset N t N preset N u = {}
in ballE-in, assumption)
by blast

lemma contactFreeStep Equiv:
[contactFree N; My € reachable N| = step N My G My = contactFreeStep N M1 G Mo
by (rule iffI, simp add: stepImplContactFreeStep, simp add: contactFreeStep Valid)

definition finitelyMarked :: ('e,’act)petrinet = bool where
finitelyMarked N =
finite (initial N) A
(Yt € transitions N. 3s € places N. (s, t) € flow N) A
(Vt € transitions N. finite (postset N t))

lemma finiteStepImplFinitePostSet [intro]:

[Vt € G. finite (postset N t); finite G; G C transitions N| = finite (postsetSet N G)
apply (simp add: postsetSet-def)
apply (subgoal-tac {y. 3z€G. (z, y) € flow N} = (Ut € G. postset N t))

prefer 2 apply (simp add: postset-def, blast)
apply (erule-tac s = (Ut € G. postset N t) and t = {y. Jz€G. (z, y) € flow N} in ssubst)
by simp

lemma finitelyMarked Everywhere: [finitelyMarked N; M € reachable N| = finite M
apply (unfold finitelyMarked-def)
apply (erule reachable.induct, simp)
apply (erule ezFE)
apply (subgoal-tac finite G)

apply (simp add: step-def)

apply (erule conjE)+

apply (rule-tac N = N and G = G in finiteStepImplFinitePostSet)

apply blast
apply assumption
apply assumption

apply (simp add: step-def)

apply (erule conjE)+

apply (thin-tac My € reachable N)

apply (thin-tac finite (initial N))

apply (thin-tac My = M, — presetSet N G U postsetSet N G)
apply (thin-tac G # {})

apply (thin-tac ¥V tEtransitions N. finite (postset N t))
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apply (rule-tac f = A\t. SOME s. (s, t) € flow N in finite-imageD)

apply (subgoal-tac (A\t. SOME s. (s, t) € flow N) ‘' G) C M)
apply (erule-tac A = (A\t. SOME s. (s, t) € flow N) * G and B = M in finite-subset)
apply assumption

apply (thin-tac finite M)

apply (rule subsetl)

apply clarify

apply (erule-tac A = G and z = t in ballE-in, assumption)

apply (erule conjE)+

apply (simp add: preset-def)

apply (rule-tac Q@ = Az. x € M in somel2-ex)
apply (erule-tac z = t and A = transitions N in ballE-in, blast)
apply blast

apply blast

rule inj-onl, rename-tac t u)

rule directContradiction)

apply (erule-tac + = t and y = u in ballE-in-double, assumption+)

apply (erule impE, assumption, erule conjE)

apply (frule-tac £ = t and A = transitions N and P = \t. 3s € places N. (s, t) € flow N
in ballE-in, blast, assumption)

apply (frule-tac £ = u and A = transitions N and P = Au. s € places N. (s, u) € flow N
in ballE-in, blast, assumption)

apply (frule-tac A = places N and P = Xs. (s, t) € flow N in bexzToEr)

apply (frule-tac A = places N and P = Xs. (s, u) € flow N in bexToFEx)

apply (frule-tac P = Xs. (s, t) € flow N and @ = As. (s, u) € flow N
in some-connect, assumption+)

apply (simp add: preset-def)

by blast

apply
apply

N N N

definition distributed N =
dcoloc. (Vi € transitions N. Vs € preset N t. coloc s t) A
(Vtu My G Msy. (reachable NMi ANt € GANu€ GAstep NMy G Msg) — = coloc t u)

lemma distributed-by-mapping:
Jloc. (Vt € transitions N. Vs € preset N t. loc s = loc t) A
(Vtu My G My. (reachable N My ANt € G ANué€ G A step NMy G My) —
loc t # loc u) = distributed N
apply (simp add: distributed-def)
by (erule exE, rule-tac £ = Az y. loc z = loc y in ex])

definition stepTraces N =
{Trace. 3 Gs Ms. foldl (\t (M1, G, M2). t N\ step N My G M3) True
(zip (initial N # Ms) (zip Gs Ms)) A
Trace = map (AG. Abs-multiset (Aa. card {t € G. label Nt = a A a ¢ silent N})) Gs}

definition plainify :: ('e,’act)petrinet = ('e,’e)petrinet
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where plainify N = Abs-petrinet ((places N), (transitions N), (flow N), id, (initial N), {})

lemma petrinet.access:
shows [(S, T, F, I, My, 7Set) € petrinet] —
places (Abs-petrinet (S, T, F, I, My, 7Set)) = S
and [(S, T, F, I, My, 7Set) € petrinet] —
transitions (Abs-petrinet (S, T, F, 1, My, 7Set)) = T
and [(S, T, F, I, My, 7Set) € petrinet] —
flow (Abs-petrinet (S, T, F, 1, My, 7Set)) = F
and [(S, T, F, I, My, 7Set) € petrinet] —
label (Abs-petrinet (S, T, F, 1, My, 7Set)) =1
and [(S, T, F, I, My, TSet) € petrinet] —
initial (Abs-petrinet (S, T, F, I, My, TSet)) = My
and [(S, T, F, I, My, TSet) € petrinet] —
silent (Abs-petrinet (S, T, F', I, My, T7Set)) = 78Set
by (
(simp add: places-def transitions-def flow-def label-def initial-def silent-def),
(subgoal-tac Rep-petrinet (Abs-petrinet (S, T, F, 1, My, 7Set)) = (S, T, F', I, Mg, 7Set),
simp),
(blast intro: Abs-petrinet-inverse)
)+

lemma petrinet.unfold-raw:
I(S, T, F, 1, Mo, TSet) = Rep-petrinet N,
(S, T, F,1, My, 7Set) € petrinet —> P (Abs-petrinet (S, T, F, 1, My, 7Set))] = P N
apply (subgoal-tac (S, T, F, I, My, TSet) € petrinet)
apply (subgoal-tac P (Abs-petrinet (S, T, F, I, Mg, TSet)))
apply (simp add: Rep-petrinet-inverse)
apply blast
by (erule ssubst, rule Rep-petrinet)

lemma petrinet.unfold:
[(places N, transitions N, flow N, label N, initial N, silent N) € petrinet —>
P (Abs-petrinet (places N, transitions N, flow N, label N, initial N, silent N))]
= PN
apply (rule-tac S = places N and T = transitions N and F = flow N and [ = label N
and Mo = initial N and 7Set = silent N in petrinet.unfold-raw)
apply (simp add: petrinet-def places-def transitions-def flow-def label-def initial-def silent-def)
by blast

lemma plainify-successful-raw [intro!]:
[(S, T, F, 1, My, 7Set) € petrinet] = plain (plainify (Abs-petrinet (S, T, F, 1, Mg, 7Set)))
apply (simp add: plain-def plainify-def)
apply (subgoal-tac (S, T, F, id, Mg, {}) € petrinet, simp add: petrinet.access)
apply (simp add: petrinet-def)
apply (unfold wellformed-petrinet-def)
apply (simp only: Let-def)
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by blast

lemma plainify-successful [intro!]: plain (plainify N)
apply (rule-tac N = N in petrinet.unfold)
by blast

end

theory AsynFSM
imports Main Multiset DrahflowTools
begin

typedef (‘act)actsig =
{2 2 (Yact set)x(‘act set)x('act set).
let (i, Y0, X1)=YmXiNXo={}ASNET={}AXon 32T ={}}
apply (rule exl[where = = ({}, {}, {})])
by simp

definition input :: ('act)actsig = 'act set where input X = fst (Rep-actsig X)
definition output :: (‘act)actsig = 'act set where output ¥ = fst (snd (Rep-actsig X))
definition inner :: (‘act)actsig = 'act set where inner ¥ = snd (snd (Rep-actsig X))

lemma actsig.unfold-raw:
[(In, Out, Inner) = Rep-actsig ¥;
(In, Out, Inner) € actsig = P (Abs-actsig (In, Out, Inner))] = P %
apply (subgoal-tac (In, Out, Inner) € actsig)
apply (subgoal-tac P (Abs-actsig (In, Out, Inner)))
apply (simp add: Rep-actsig-inverse)
apply blast
by (erule ssubst, rule Rep-actsig)

lemma actsig.unfold:

[(input X, output X, inner X) € actsig = P (Abs-actsig (input X, output X, inner X))]
— P X

apply (rule-tac In = input ¥ and Out = output X and Inner = inner ¥ in actsig.unfold-raw)
apply (simp add: actsig-def input-def output-def inner-def)

by blast

lemma input-access [simp]:
(In, Out, Inner) € actsig = input (Abs-actsig (In, Out, Inner)) = In
apply (simp add: input-def )
apply (subgoal-tac Rep-actsig (Abs-actsig (In, Out, Inner)) = (In, Out, Inner), simp)
by (blast intro: Abs-actsig-inverse)

lemma output-access [simp]:

(In, Out, Inner) € actsig = output (Abs-actsig (In, Out, Inner)) = Out
apply (simp add: output-def)
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apply (subgoal-tac Rep-actsig (Abs-actsig (In, Out, Inner)) = (In, Out, Inner), simp)
by (blast intro: Abs-actsig-inverse)

lemma inner-access [simp|:
(In, Out, Inner) € actsig = inner (Abs-actsig (In, Out, Inner)) = Inner
apply (simp add: inner-def)
apply (subgoal-tac Rep-actsig (Abs-actsig (In, Out, Inner)) = (In, Out, Inner), simp)
by (blast intro: Abs-actsig-inverse)

typedef ('q,’act)asynfsm =
{A =z ("act actsig) x ("q set)x (") x (("gx("act set)x('act set)x'q)set).
let (3, Q, qo, stepRel) = A in (g0 € Q A (V(q, In, Out, q') € stepRel. In # {} A
g€ QANqg €Q N Out Coutput X A In C (input ¥ U inner X)))}
apply (rule exI[where z = let ¢ = (SOME z. True) in (Abs-actsig ({}, {}, {}), {¢}, ¢, {})])
by (simp add: Let-def)

definition actions :: ('q,’act)asynfsm = (‘act actsig) where actions A = fst (Rep-asynfsm A)
definition states :: ('q,’act)asynfsm = ('q set) where states A = fst (snd (Rep-asynfsm A))
definition initial :: ('q,’act)asynfsm = 'q where initial A = fst (snd (snd (Rep-asynfsm A)))
definition steps :: ('q,’act)asynfsm = (("gx(‘act set)x('act set)x'q)set)

where steps A = snd (snd (snd (Rep-asynfsm A)))

lemma asynfsm.unfold-raw:
[(2, Q, qo, stepRel) = Rep-asynfsm A;
(2, Q, qo, stepRel) € asynfsm = P (Abs-asynfsm (X, Q, qo, stepRel))] =— P A
apply (subgoal-tac (X, @, qo, stepRel) € asynfsm)
apply (subgoal-tac P (Abs-asynfsm (X, @, qo, stepRel)))
apply (simp add: Rep-asynfsm-inverse)
apply blast
by (erule ssubst, rule Rep-asynfsm)

lemma asynfsm.unfold:
[(actions A, states A, initial A, steps A) € asynfsm —>
P (Abs-asynfsm (actions A, states A, initial A, steps A))] = P A
apply (rule-tac X = actions A and @ = states A and qg = initial A
and stepRel = steps A in asynfsm.unfold-raw)
apply (simp add: asynfsm-def actions-def states-def initial-def steps-def )
by blast

definition step :: ('q,’act)asynfsm = 'q = (‘act set) = ('act set) = "¢ = bool
where step A q In Out ¢’ = (q, In, Out, q') € steps A

lemma actions-access [simp]:
(3, Q, qo, stepRel) € asynfsm — actions (Abs-asynfsm (X, Q, qo, stepRel)) = %
apply (simp add: actions-def)
apply (subgoal-tac Rep-asynfsm (Abs-asynfsm (X, @, qo, stepRel)) = (2, @, qo, stepRel), simp)
by (blast intro: Abs-asynfsm-inverse)
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lemma states-access [simp]:
(3, Q, qo, stepRel) € asynfsm = states (Abs-asynfsm (X, @, qo, stepRel)) = Q
apply (simp add: states-def)
apply (subgoal-tac Rep-asynfsm (Abs-asynfsm (X, @, qo, stepRel)) = (X, @, qo, stepRel), simp)
by (blast intro: Abs-asynfsm-inverse)

lemma initial-access [simp]:
(3, Q, qo, stepRel) € asynfsm — initial (Abs-asynfsm (X, @, qo, stepRel)) = qo
apply (simp add: initial-def)
apply (subgoal-tac Rep-asynfsm (Abs-asynfsm (X, @, qo, stepRel)) = (X, Q, qo, stepRel), simp)
by (blast intro: Abs-asynfsm-inverse)

lemma steps-access [simp):

(2, @, qo, stepRel) € asynfsm = steps (Abs-asynfsm (X, Q, qo, stepRel)) = stepRel
apply (simp add: steps-def)
apply (subgoal-tac Rep-asynfsm (Abs-asynfsm (X, @, qo, stepRel)) = (2, @, qo, stepRel), simp)
by (blast intro: Abs-asynfsm-inverse)

lemma initial-in-states [intro]: initial A € states A

apply (simp add: initial-def states-def)

apply (subgoal-tac Rep-asynfsm A € asynfsm)
prefer 2 apply (rule Rep-asynfsm)

by (clarsimp simp: asynfsm-def)

lemma nothing-in-emptyset: A = {} = y ¢ A by blast

lemma step-respects-signature [rule-format]:
shows step A ¢q1 In Out g2 — Out C output (actions A)
and step A q1 In Out g — In C (input (actions A)) U (inner (actions A))
and step A q1 In Out g — In N output (actions A) = {}
and step A g1 In Out g — Out N ((input (actions A)) U (inner (actions A))) = {}
apply succeed
apply (rule asynfsm.unfold)
apply (clarsimp simp: step-def steps-access actions-access)
apply (unfold asynfsm-def, clarsimp)
apply (erule-tac x = (q1, In, Out, q2) in ballE-in, assumption, blast)
apply (rule asynfsm.unfold)
apply (clarsimp simp: step-def steps-access actions-access)
apply (unfold asynfsm-def, clarsimp)
apply (erule-tac x = (q1, In, Out, q2) in ballE-in, assumption, blast)
apply (rule asynfsm.unfold)
apply (clarsimp simp: step-def steps-access actions-access)
apply (unfold asynfsm-def, clarsimp)
apply (erule-tac z = (q1, In, Out, q2) in ballE-in, assumption, clarsimp)
apply (rule actsig.unfold)
apply (subst output-access, assumption)
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apply (unfold actsig-def)
apply (clarsimp, rule equalsOI, (drule-tac y = y in nothing-in-emptyset)+, blast)
apply (rule asynfsm.unfold)
apply (clarsimp simp: step-def steps-access actions-access)
apply (unfold asynfsm-def, clarsimp)
apply (erule-tac © = (q1, In, Out, q2) in ballE-in, assumption, clarsimp)
apply (rule actsig.unfold)
apply (subst input-access, assumption)
apply (subst inner-access, assumption)
apply (unfold actsig-def)
by (clarsimp, rule equalsOI, (drule-tac y = y in nothing-in-emptyset)+, blast)

definition serial :: ('q,’act)asynfsm = bool

where serial A =V q.VIn.V Out.Vq' step A q In Out ¢' — (Fz. In = {z})
definition deterministic :: ('q,’act)asynfsm = bool

where deterministic A =V q. VIn. 3'0ut. I!q’. step A g In Out ¢’

definition isomorphic :: ('q1,’act)asynfsm = ('q2,’act)asynfsm = bool
where isomorphic A B = actions A = actions B N\ (3. ¢ (initial A) = initial B A
(Vq.VIn. ¥V Out.Vq' step A q In Out ¢’ = step B (¢ q) In Out (¢ q')))

definition match :: 'act actsig = 'act actsig = bool

where match ¥ ¥/ = input ¥ N input X' = {} A
output ¥ N output X' = {} A
(input X U output X U inner X) N inner X' = {} A
(input X' U output X' U inner ¥') N inner ¥ = {}

lemma implfalse: -P — P — (@ by blast
definition set-aggr-filter where set-aggr-filter F' L = foldl (ASum S. Sum U (S N F)) {} L
lemma set-aggr-filter.lemmal: a N F = a N F U {} N F by blast

lemma set-aggr-filter.absorb [simp]: set-aggr-filter F list N F = set-aggr-filter F' list
apply (simp add: set-aggr-filter-def )
apply (induct-tac list, simp)
apply simp
apply (subgoal-tac foldl (ASum S. Sum U S N F) (aNFU{}NF)list =
a N F U foldl (ASum S. Sum U S N F) {} list N F)
prefer 2
apply (rule semigroup-add.foldl-assoc)
apply (simp add: semigroup-add-def, blast)
apply (subst (3) set-aggr-filter.lemmal)
by (simp, blast)

lemma set-aggr-filter.univ-is-union [simp|: set-aggr-filter UNIV list = foldl op U {} list
by (simp add: set-aggr-filter-def)
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lemma set-aggr-filter.associative [simp]:
shows set-aggr-filter F' (a # list) = (a N F) U set-aggr-filter F list
and set-aggr-filter F' (list Q [a]) = (a N F) U set-aggr-filter F list
apply succeed
apply (simp add: set-aggr-filter-def )
apply (subgoal-tac foldl (ASum S. Sum U SN F) (a N FU{}NF)list =
a N F U foldl (ASum S. Sum U S N F) {} list N F)
prefer 2
apply (rule semigroup-add.foldl-assoc)
apply (simp add: semigroup-add-def, blast)
apply (subst (2) set-aggr-filter.lemmal)
apply (erule trans)
apply (rule-tac f = Az. a N F U z in eg-cong-fun-app)
apply (fold set-aggr-filter-def)
apply (rule set-aggr-filter.absorb)
by (simp add: set-aggr-filter-def , blast)

lemma set-aggr-filter.rev [simp]: set-aggr-filter F' (rev list) = set-aggr-filter F' list
by (induct-tac list, simp-all add: set-aggr-filter.associative)

lemma set-aggr-filter.zero [simp]: set-aggr-filter F' [ = {}
by (simp add: set-aggr-filter-def)

lemma set-aggr-filter.addsub [rule-format]:
set-aggr-filter Add List C P — set-aggr-filter (P — M) List N Sub = {} —
set-aggr-filter (P — M) List = set-aggr-filter ((Add U P) — (Sub U M)) List
apply (induct-tac List, simp)
apply (rule impI)
apply clarsimp
apply (subgoal-tac a N (P — M) = a N ((Add U P) — (M U Sub)))
apply blast
by blast

lemma set-aggr-filter.subset-of-filter [rule-format]: set-aggr-filter F List C F
apply (induct-tac List, simp)
by bestsimp

definition bool-and-map where bool-and-map f L = foldl (At e. t A fe) True L

lemma bool-and-map.associative [simp]:
shows bool-and-map f (a # List) = (f a A bool-and-map f List)
and bool-and-map f (List Q [a]) = (f a A bool-and-map f List)
apply succeed
apply (simp add: bool-and-map-def )
apply (subgoal-tac foldl (At e. t A fe) (True A fa) List =
(fa A foldl (Mt e.t A fe) True List))
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prefer 2

apply (induct-tac List, simp)

apply clarsimp

apply (case-tac f aa)
apply clarsimp

apply clarsimp

apply (subgoal-tac foldl (At e. t A fe) False list = False)
apply blast

apply (induct-tac list, simp)

apply simp

apply bestsimp
by (simp add: bool-and-map-def, blast)

lemma bool-and-map.absorb [simp]: bool-and-map f || = True
by (bestsimp simp: bool-and-map-def )

lemma bool-and-map.every [intro,rule-format]: bool-and-map f List — (Vz € set List. f x)
apply (induct-tac List, simp add: bool-and-map-def)
by simp

lemma bool-and-map.everyA: bool-and-map f List — Yz € set List. fx
apply (rule-tac P = bool-and-map f List and @ = Vz € set List. f z in impFE)
by (blast intro: bool-and-map.every)+

lemma bool-and-map.everyR [intro]: Yz € set List. f © = bool-and-map f List

apply (rule-tac Q = bool-and-map f List and P = Vx € set List. fz in impE)
apply (induct-tac List, simp add: bool-and-map-def )

by bestsimp-+

primrec matchFSMList :: (('q,’act)asynfsm)list = bool where

matchFSMList || = True |

matchFSMList (A # L) = (bool-and-map (Ae. match (actions A) (actions e)) L N
matchFSMList L)

definition asynCompositionRaw ::
(("q, act)asynfsm)list =
(("act actsig) x ('q list x 'act multiset)set x ('q list x 'act multiset) X
(('q list x 'act multiset) x 'act set x 'act set x 'q list x 'act multiset)set)
where asynCompositionRaw L =
let inputs = ((UA € set L. input (actions A)) — (UA € set L. output (actions A))) in
let outputs = ((J A € set L. output (actions A)) — (UA € set L. input (actions A))) in
let inners = ((UA € set L. inner (actions A)) U (UA € set L. input (actions A) N
(UA € set L. output (actions A)))) in
let Q@ = ((list-times-compr L (AA. states A)) x (powermultiset inners)) in
(
(Abs-actsig (inputs, outputs, inners)),
@,
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((map (MA. initial A) L), {#}),
{(q1, In, Out, q2). FInl. 3 Outl. let (qly, msg1) = q1 in let (qla, msgs) = qo2 in
bool-and-map (\(qi1, ini, outi, qia, At).
((step Ai qiy ini outi qia N multiset-of (ini N input (actions Ai) N inners) CH# msg1)
V (ini = {} A outi = {} A qi1 = qi2)))
(zip qly (zip Inl (zip Outl (zip qla L)))) A
In = set-aggr-filter (inputs U inners) Inl A In # {} A
Out = set-aggr-filter outputs Outl N
msgy = (msg1 — multiset-of In) + multiset-of (set-aggr-filter inners Outl) A
(1€QNgeQA
length qly = length L A length Inl = length L N length Outl = length L A
length glo = length L}
)

definition asynComposition :: (('q,’act)asynfsm)list = ('q list x 'act multiset,’act)asynfsm
where asynComposition L = Abs-asynfsm (asynCompositionRaw L)

lemma matchFSM List-no-conflict-front [intro]:
shows matchFSMList (A # list) =
(input (actions A) N (U A € set list. input (actions A))) = {}
and matchFSMList (A # list) =
(output (actions A) N (U A € set list. output (actions A))) = {}
and matchFSMList (A # list) =
(inner (actions A) N (UA € set list. input (actions A) U output (actions A) U
inner (actions A))) = {}
and matchFSMList (A # list) =
((input (actions A) U output (actions A) U inner (actions A)) N
(UA € set list. inner (actions A))) = {}
apply succeed
apply (clarsimp simp: matchFSMList-def )
apply (rule equalsOI)
apply clarsimp
apply (drule-tac List = list and f = Ae. match (actions A) (actions e) and z = Aa
in bool-and-map.every, assumption)
apply (clarsimp simp: match-def)
apply blast
apply (clarsimp simp: matchFSMList-def )
apply (rule equalsOI)
apply clarsimp
apply (drule-tac List = list and f = Ae. match (actions A) (actions e) and z = Aa
in bool-and-map.every, assumption)
apply (clarsimp simp: match-def)
apply blast
apply (clarsimp simp: matchFSMList-def)
apply (rule equalsOl)
apply clarsimp
apply (drule-tac List = list and f = Ae. match (actions A) (actions e) and z = Aa
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in bool-and-map.every, assumption)
apply (clarsimp simp: match-def)
apply blast
apply (clarsimp simp: matchFSMList-def )
apply (rule equalsOI)
apply clarsimp
apply (drule-tac List = list and f = Ae. match (actions A) (actions e) and z = Aa
in bool-and-map.every, assumption)
apply (clarsimp simp: match-def)
by blast

lemma Union-Bun-distrib: (Ja € A. Sa U Ta) = (Ja € A. Sa)U (Ua € A. T a) by blast

lemma abstraction: [\z. P z] = P
apply (erule-tac © = z in meta-allE)
by assumption

lemma meta-abstraction: [Q z; N\z. Q z — P z] = Pux
apply (erule-tac © = z in meta-allE)
by blast

lemma meta-abstractiont:
[Qabcdef;Nabecdef.Qabecdef — Pabcecdef]=— Pabcdef
apply (erule-tac £ = a in meta-allE)

apply (erule-tac z = b in meta-allE)

apply (erule-tac © = ¢ in meta-allE)

apply (erule-tac z = d in meta-allE)

apply (erule-tac © = e in meta-allE)

apply (erule-tac z = f in meta-allE)

by blast

lemma matchFSMList-produces-actsig-lemmaZ2: [z € A; v € B; AN B = {}] = Fulse

by blast

lemma matchFSMList-produces-actsig-lemmal :

[(d—e)n(e—d)={}(d—e)n(fUdNe)={} A(e—d)n(fUdne)={}
and={hbtbne={}Acn(dUeUf)={}; (aUbUc)Nf={};
anb={lhanc={}bNnec={}]] =

(aUd—-(bUe)N(bUe—(aUd))=
{dAN(eud—-(bUe))n(cUfUu(aud)n(bue))={}A
bUe—(aUd)N(cUfU(aUd)Nn(bUe)) =1}

by ((rule conjl)?, rule equalsOI, ((drule-tac y = y in nothing-in-emptyset)+, blast))+

lemma matchFSMList-produces-actsig [rule-format]:

matchFSMList L — (
(U Aeset L. input (actions A)) — (U A€set L. output (actions A)),
(UAeset L. output (actions A)) — (| A€set L. input (actions A)),
(U Aéeset L. inner (actions A)) U (U A€set L. input (actions A)) N

89



A Appendix

(U A€set L. output (actions A))

) € actsig
apply (induct-tac L, simp add: actsig-def)
apply (rule impl)
apply (insert matchFSMList-no-conflict-front)
apply (erule-tac © = a in meta-allE)+
apply (erule-tac xz = list in meta-allE)+
apply (simp add: actsig-def)

apply (insert Union-Bun-distrib)[1]

apply (erule-tac x = set list in meta-allE)

apply (erule-tac z = Xa. (input (actions a) U output (actions a)) in meta-allE)
apply (erule-tac z = A\a. inner (actions a) in meta-allE)

apply simp

apply (insert Union-Bun-distrib)[1]

apply (erule-tac © = set list in meta-allE)

apply (erule-tac z = A\a. input (actions a) in meta-allF)
apply (erule-tac z = X\a. output (actions a) in meta-allE)

apply simp

apply (subgoal-tac input (actions a) N output (actions a) = {} A
input (actions a) N inner (actions a) = {} A
output (actions a) N inner (actions a) = {})
prefer 2
apply (rule actsig.unfold)
apply (force simp: actsig-def )

apply (rule-tac a = input (actions a) and
b = output (actions a) and
¢ = inner (actions a) and
d = U a€set list. input (actions a) and
e = U aeset list. output (actions a) and
[ = Uaéeset list. inner (actions a) and
Q=Xabcdef.(d—e)N(e—d)={}A
(d—eyn(fudne)={}A(e—d)n(fUudne)={} A
and={}Abne={}Aecn(dUeUf)={}A
(aUbUCc)Nf={}A
anb={}ANanc={} ANbnc=/{}in meta-abstractiont)
apply simp
apply (rename-tac Ai Ao Ainner Li Lo Linner)

by (rule-tac a = Ai and b = Ao and ¢ = Ainner and d = Li and e = Lo and f = Linner
in matchFSMList-produces-actsig-lemmal, simp+)

lemma asynCompositionValid [intro]: matchFSMList L — asynCompositionRaw L € asynfsm
apply (simp add: asynCompositionRaw-def asynfsm-def Let-def)
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apply (rule conjI)

apply (simp add: list-times-compr-def )

apply (induct-tac L, simp)

apply (simp add: initial-in-states)
apply (rule conjI)

apply (simp add: powermultiset-def )
apply (rule alll)+

apply (rename-tac qly My In Out gly M3)
apply (rule impI)
apply ((erule exE)+, (erule conjE)+)

(

(

apply ((rule congI)?, assumption)+
apply (rule conjI)

apply (subst output-access, fastsimp simp: matchFSMList-produces-actsig)

apply (clarsimp simp: set-aggr-filter.subset-of-filter)
apply (subst input-access, fastsimp simp: matchFSMList-produces-actsig)
apply (subst inner-access, fastsimp simp: matchFSM List-produces-actsig)
by (clarsimp simp: set-aggr-filter.subset-of-filter)

lemma asynComposition ValidSubst [simp]:
matchFSMList  —

Rep-asynfsm (Abs-asynfsm (asynCompositionRaw L)) = asynCompositionRaw L
by (bestsimp simp: Abs-asynfsm-inverse asynComposition Valid)

lemma asynComposition Commutative:
[matchFSMList [A, B]; matchFSMList [B, A]] =
isomorphic (asynComposition [A, B]) (asynComposition [B, A])
apply (insert asynComposition Valid[where L = [A, B]])
apply (insert asynCompositionValid[where L = [B, A]])
apply simp

apply (unfold isomorphic-def)
apply (rule congI)
apply (simp add: asynComposition-def asynCompositionRaw-def Let-def )
apply ((unfold match-def)[1], (erule conjE)+)
apply (subgoal-tac
(input (actions A) U input (actions B) — (output (actions A) U output (actions B))) =
(input (actions B) U input (actions A) — (output (actions B) U output (actions A)))
(output (actions A) U output (actions B) — (input (actions A) U input (actions B)))
(output (actions B) U output (actions A) — (input (actions B) U input (actions A)))
(inner (actions A) U inner (actions B) U (input (actions A) U input (actions B)) N
(output (actions A) U output (actions B))) =
(inner (actions B) U inner (actions A) U (input (actions B) U input (actions A)) N
(output (actions B) U output (actions A))))
apply ((erule conjE)+, simp)
apply blast

A
A

The next line gives the actual mapping function.
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apply (rule-tac x = X(L, M). (rev L, M) in exI)
apply (simp add: split-def)
apply (rule conjI)

apply (simp add: asynComposition-def asynCompositionRaw-def Let-def)
apply (rule alll)+
apply (rename-tac qly My In Out gly M3)
apply (simp add: asynComposition-def asynCompositionRaw-def Let-def step-def )
apply (rule iffT)

apply (erule exE)+

apply (rule-tac = rev Inl in exl)

apply (rule-tac © = rev Outl in exI)

The following organizes meaningful names for the components of the composite lists and proves
that they indeed have length two.

apply (subgoal-tac (3 glay ¢lby. qly = [qlay, qlb1]) A (3 Inla Inlb. Inl = [Inla, Inlb]) A
(3 Outla Outlb. Outl = [Outla, Outlb]) A (3 qlaz ¢lba. qla = [qlaz, qlb2]))
prefer 2
apply (subgoal-tac qly = [hd qlv, hd (tl ql1)] A Inl = [hd Inl, hd (¥ Inl)] A
Outl = [hd Outl, hd (tl Outl)] A qla = [hd gla, hd (t ql2)])
prefer 2 apply ((erule conjE)+, ((rule conjl)?, simp add: list-fizlen-expl2)+)[1]
apply (erule conjE)+
apply (rule congl, rule-tac © = hd ¢l in exl, rule-tac x = hd (# ¢ly) in exl, assumption)
apply (rule conjI, rule-tac x = hd Inl in exl, rule-tac x = hd (¢l Inl) in exl, assumption)
apply (rule conjl, rule-tac x = hd Outl in exl, rule-tac x = hd (tl Outl) in exl, assumption)
apply ( rule-tac ¥ = hd qls in exl, rule-tac © = hd (tl ql2) in exl, assumption)
apply (erule conjE)+
apply (erule exE)+

Main proof line continues below.

apply (rule conjl, simp)
apply (rule congI)
apply (case-tac Inlb = {}, force)
apply (subst Un-commute[of inner (actions B) inner (actions A))])
apply (subst Un-commute[of input (actions B) input (actions A)])
apply (subst Un-commute[of output (actions B) output (actions A)])
apply simp
apply (case-tac Inla = {}, force)
apply (subst Un-commute|of inner (actions B) inner (actions A)])
apply (subst Un-commute|of input (actions B) input (actions A)])
apply (subst Un-commute|of output (actions B) output (actions A)])
apply simp
apply (rule congl, simp, blast)
apply (rule conjl, assumption)
apply (rule congl, simp, blast)
apply (rule congI)
apply simp
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apply (rule-tac f = DrahflowTools.multiset-of in eq-cong-fun-app)
apply blast
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apply (subgoal-tac
(inner (actions B) U inner (actions A) U (input (actions B) U input (actions A)) N
(output (actions B) U output (actions A))) =
(inner (actions A) U inner (actions B) U (input (actions A) U input (actions B)) N
(output (actions A) U output (actions B))))
prefer 2 apply blast
apply ((rule congI)?, simp)+

apply (erule exE)+
apply (rule-tac z = rev Inl in exl)
apply (rule-tac x = rev Outl in exI)

The following organizes meaningful names for the components of the composite lists and proves
that they indeed have length two.

apply (subgoal-tac (3 qlay qlby. qly = [qlay, qlb1]) A (3 Inla Inlb. Inl = [Inla, Inlb]) A
(3 Outla Outlb. Outl = [Outla, Outlb]) A (3 qlaz glba. qla = [qlaz, qlb2]))
prefer 2
apply (subgoal-tac qly = [hd ql1, hd (8l ql1)] A Inl = [hd Inl, hd (t Inl)] A
Outl = [hd Outl, hd (tl Outl)] A qla = [hd qla, hd (t ql2)])
prefer 2 apply ((erule conjE)+, ((rule conjl)?, simp add: list-fizlen-expl2)+)[1]
apply (erule conjE)+
apply (rule conjl, rule-tac x = hd qly in exl, rule-tac x = hd (tl ql1) in exl, assumption)
apply (rule conjl, rule-tac © = hd Inl in ezl, rule-tac x = hd (tl Inl) in exl, assumption)
apply (rule congl, rule-tac x = hd Outl in exl, rule-tac z = hd (¢l Outl) in exl, assumption)
apply ( rule-tac x = hd qls in exl, rule-tac = hd (tl gl3) in exl, assumption)
apply (erule conjE)+
apply (erule exE)+

Main proof line continues below.

apply (rule congI)

apply simp

apply (rule congI)
apply (case-tac Inlb = {}, force)
apply (subst Un-commute|of inner (actions A) inner (actions B)])
apply (subst Un-commute|of input (actions A) input (actions B)])
apply (subst Un-commute|of output (actions A) output (actions B)])
apply simp

apply (case-tac Inla = {}, force)

apply (subst Un-commute[of inner (actions A) inner (actions B)))

apply (subst Un-commute[of input (actions A) input (actions B)])

apply (subst Un-commute[of output (actions A) output (actions B)])

apply simp
apply (rule conjI, simp, blast)

apply (rule congl, assumption)
apply (rule conjI, simp, blast)
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apply (rule conjI)
apply simp
apply (rule-tac f = DrahflowTools.multiset-of in eq-cong-fun-app)
apply blast
apply (subgoal-tac
(inner (actions B) U inner (actions A) U (input (actions B) U input (actions A)) N
(output (actions B) U output (actions A))) =
(inner (actions A) U inner (actions B) U (input (actions A) U input (actions B)) N
(output (actions A) U output (actions B)))
prefer 2 apply blast
by ((rule conjI)?, simp)+

lemma matchFSMList.trivial [intro]: matchFSMList [| by simp
lemma matchFSMList.inherit [rule-format]: matchFSMList (A # L) — matchFSMList L
by bestsimp

lemma set-aggr-filter-assoc-finite [intro,rule-format):
(Vz € set List. finite ) — finite (set-aggr-filter F List)
apply (induct-tac List)
apply (bestsimp simp: set-aggr-filter-def )
by simp

lemma step-not-empty [intro]: = step A q1 {} Out g2
by (force simp: step-def asynfsm-def intro: asynfsm.unfold)

lemma list-times-compr-same-length [simp,rule-format]:
Vz. z € list-times-compr L f — length x = length L
by (induct-tac L, simp+)

lemma step-asyn-implies-length [simp]:
shows [matchFSMList L; step (asynComposition L) q1 In Out ¢3] =
length (fst q1) = length L
and [matchFSMList L; step (asynComposition L) q1 In Out q3] = length (fst q2) = length L
apply (simp add: step-def)
apply (rule-tac A = (asynComposition L) in asynfsm.unfold)
apply (simp add: asynfsm-def)
apply (erule-tac conjE)
apply (erule-tac z = (q1, In, Out, q2) in ballE-in, assumption)
apply clarsimp
apply (thin-tac Out C output (actions (asynComposition L)))
apply (thin-tac In C input (actions (asynComposition L)) U
inner (actions (asynComposition L)))
apply (thin-tac In # {})
apply (thin-tac initial (asynComposition L) € states (asynComposition L))
apply (thin-tac (q1, In, Out, q2) € steps (asynComposition L))
apply (thin-tac q2 € states (asynComposition L))
apply (drule-tac asynComposition Valid)
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apply (bestsimp simp: asynComposition-def asynCompositionRaw-def Let-def)
apply (simp add: step-def)
apply (rule-tac A = (asynComposition L) in asynfsm.unfold)
apply (simp add: asynfsm-def)
apply (erule-tac conjE)
apply (erule-tac x = (q1, In, Out, q2) in ballE-in, assumption)
apply clarsimp
apply (thin-tac Out C output (actions (asynComposition L)))
apply (thin-tac In C input (actions (asynComposition L)) U
inner (actions (asynComposition L)))
apply (thin-tac In # {})
apply (thin-tac initial (asynComposition L) € states (asynComposition L))
apply (thin-tac (q1, In, Out, q2) € steps (asynComposition L))
apply (thin-tac q1 € states (asynComposition L))
apply (drule-tac asynComposition Valid)
by (bestsimp simp: asynComposition-def asynCompositionRaw-def Let-def )

lemma in-set-implies-index [intro,rule-format]: © € set L — (34i. L1 i =2 A i < length L)
apply (induct-tac L)
apply simp
apply simp
apply (rule conjI)
apply (rule impl, rule-tac x = 0 in ezl, simp)
apply (rule impl)
apply (erule-tac impE, assumption)
apply (erule-tac exE)
apply (rule-tac = Suc i in exl)
by simp

lemma list-index-shift [intro,rule-format):

Vi. i < Suc (length list) — 0 < i — (a # list) i =list! (1 — 1)
apply (induct-tac list, simp)

apply (rule alll)

apply (case-tac i, simp)

by simp

lemma matchFSMList-shared-same-index [intro,simp,rule-format]:
matchFSMList L — I # {} —
(Vi.i < length L — (Vj.j < length L —
I C input (actions (L ! 1)) U inner (actions (L 1)) —
I C input (actions (L ! j)) U inner (actions (L 7)) — i =j))
apply (induct-tac L, simp)
apply clarsimp
apply (case-tac i = 0)
apply (case-tac j = 0)
apply blast
apply (subgoal-tac (a # list) ! i = a)
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prefer 2 apply simp
apply (frule-tac bool-and-map.everyA)
apply (erule-tac x = list | (j — 1) in ballE-in, simp)
apply (unfold match-def)[1]
apply (subgoal-tac (a # list) ! j = list ! (j — 1))
prefer 2 apply (erule list-indez-shift, simp)
apply clarsimp
apply (rule-tac a = input (actions a) and b = output (actions a) and ¢ = inner (actions a)
and d = input (actions (list ! (j — Suc 0))) and e = output (actions (list ! (j — Suc 0)))
and f = inner (actions (list ! (j — Suc 0)))
and Q@ =Xabecdef. I#{3IANTCaUcANICdUfA(aUbDUc)Nf={}A
(d UeUf)nc={}in meta-abstractiont)
apply blast
apply (erule conjE)+
apply (subgoal-tac I = {}, simp)
apply (rule equalsOl)
apply (drule-tac y = y in nothing-in-emptyset )+
apply blast
apply (case-tac j = 0)
apply (subgoal-tac (a # list) ! j = a)
prefer 2 apply simp
apply (frule-tac bool-and-map.everyA)
apply (erule-tac x = list ! (1 — 1) in ballE-in, simp)
apply (unfold match-def)[1]
apply (subgoal-tac (a # list) ! i = list | (i — 1))
prefer 2 apply (erule list-index-shift, simp)
apply clarsimp
apply (rule-tac a = input (actions a) and b = output (actions a) and ¢ = inner (actions a)
and d = input (actions (list ! (i — Suc 0))) and e = output (actions (list ! (i — Suc 0)))
and f = inner (actions (list | (i — Suc 0)))
and Q = Xabcdef. I#{3IANTCaUcANTICdUfA(aUbUc)Nf={}A
(dUeUf)nc={}in meta-abstractiont)
apply blast
apply (erule conjE)+
apply (subgoal-tac I = {}, simp)
apply (rule equalsOI)
apply (drule-tac y = y in nothing-in-emptyset )+
apply blast
apply (erule-tac x = i — 1 in allE)
apply (subgoal-tac i — 1 < length list)
prefer 2 apply simp
apply (erule-tac impE, assumption)
apply (erule-tac £ = j — 1 in dallE)
apply (subgoal-tac j — 1 < length list)
prefer 2 apply simp
apply (erule-tac impE, assumption)
apply (subgoal-tac (a # list) ! i = list ! (i — 1))
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prefer 2 apply (erule list-indez-shift, simp)
apply (subgoal-tac (a # list) ! j = list ! (j — 1))

prefer 2 apply (erule list-indez-shift, simp)
by simp

lemma disjE-excll: [PV Q; [P; - Q] = R; Q@ = R] = R by blast
lemma disjE-excl2: [PV Q; P = R; [- P; Q] = R] = R by blast

lemma step-asyn-implies-finite [intro]:

[matchFSMList L; step (asynComposition L) q1 In Out q2; Nz. © € set L = serial z]

= finite In

apply (frule-tac asynComposition Valid)

apply (clarsimp simp: step-def asynComposition-def asynCompositionRaw-def
Let-def asynComposition Valid)

apply (rule set-aggr-filter-assoc-finite)

apply (rename-tac Inputi)

apply (case-tac Inputi = {}, blast)

apply (drule-tac bool-and-map.everyA)

apply (unfold serial-def)

apply (fold step-def)

apply (unfold set-zip)

apply (rename-tac g1 M qo Inputi)

apply (subgoal-tac 3'i. i < length Inl A Inl ! i = Inputi A
step (L'14) (g1 ! 4) Inputi (Outl ! 3) (g2 ! 1))
prefer 2
apply (rule ex-exil)
apply (drule-tac L = Inl in in-set-implies-index)
apply (erule ezE)
apply (rule-tac z = i in ezl)
apply (rule conjI, simp)
apply (rule congl, simp)
apply (erule-tac x = (g1 i, Inl ! 4, Outl ! i, g2 ! 4, L'! i) in ballE, bestsimp)
apply (subgoal-tac (q1 !4, Inl ! i, Outl 1 i, g2 Vi, L1 i) €
{(q1 !4, zip Inl (zip Outl (zip g2 L)) ! 3) |
i. 1 < min (length q1)(length (zip Inl (zip Outl (zip q2 L))))}, blast)
apply (rule CollectI)
apply (rule-tac ¢ = i in exl)
apply (rule congI)
apply (erule-tac conjE)+
apply (subst nth-zip, assumption, bestsimp)
apply (subst nth-zip)
apply (erule-tac t = length Outl and s = length L in ssubst)
apply (erule-tac t = length L and s = length Inl in subst)
apply assumption
apply (subgoal-tac length qo = length L)
apply (subst length-zip)

o~~~ S~~~
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apply (erule-tac t = length g2 in ssubst)
apply (subst lower-semilattice-locale.min-maz.less-eq-less-inf .inf-idem.)
apply (erule-tac t = length L and s = length Inl in subst)
apply assumption
apply (rule-tac f = states in list-times-compr-same-length)
apply assumption
apply (subst nth-zip)
apply (subgoal-tac length qo = length L)
apply (erule-tac t = length g2 and s = length L in ssubst)
apply (erule-tac t = length L and s = length Inl in subst)
apply assumption
apply (rule-tac f = states in list-times-compr-same-length)
apply assumption
apply (erule-tac t = length L and s = length Inl in subst)
apply assumption
apply (rule refl)
apply bestsimp
apply (rename-tac i j)
apply (subgoal-tac Inputi C input (actions (L 4)) U inner (actions (L i)))
apply (subgoal-tac Inputi C input (actions (L j)) U inner (actions (L ! j)))
apply (frule-tac L = L and I = Inputi and 1 = i and j = j
in matchFSMList-shared-same-indez )
apply (simp)+
apply (erule-tac conjE)+
apply (erule-tac step-respects-signature)
apply (erule-tac conjE)+
apply (erule-tac step-respects-signature)
apply (erule exIE)
apply (erule conjE)+
apply (erule-tac x = L'! i in meta-allE)
apply clarsimp
apply (erule-tac x = q1 ! 1
and P = A\q. VIn. (3 Out. Ex (step (L) q In Out)) — (3z. In = {z}) in allE)
apply (erule-tac x = Inl ! i
and P = An. (3Out. Ex (step (L! 1) (¢1!4) In Out)) — (Fz. In = {z}) in allE)
apply (subgoal-tac (3 Out. Ex (step (L) (g1 !d) (Inl ! i) Out)))
apply simp
apply (erule exE)+
apply simp
apply (rule-tac x = Outl ! i in exl)
apply (rule-tac z = qo ! i in exl)
by assumption

lemma set-aggr-filter.element-somewhere-in-list [rule-format]:
t € set-aggr-filler F L — (Ji.2z € L i N i < length L)
apply (induct-tac L, simp add: set-aggr-filter-def)

apply clarsimp
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apply (rule conjI)
apply (rule impl)
apply (rule-tac = 0 in exl)
apply simp

apply (case-tac © € set-aggr-filter F list)
apply clarsimp
apply (rule-tac £ = Suc i in exl)
apply simp

by simp

definition source-machine L inp =
(THE i. inp € input (actions (L ! 1)) U inner (actions (L! 1)) A i < length L)

lemma source-machine-input [introl:
[matchFSMList Ly ¥ A € set L. serial A; step (asynComposition L) q1 In Out qo; inp € In]
= inp € input (actions (L ! source-machine L inp)) U
inner (actions (L source-machine L inp))
apply (frule-tac asynComposition Valid)
apply (clarsimp simp: step-def asynComposition-def asynCompositionRaw-def
Let-def asynComposition Valid)
drule-tac bool-and-map.everyA)
unfold set-zip)
rename-tac g1 M q2)
unfold source-machine-def)

apply
apply
apply
apply

N N N

apply (subgoal-tac (A\P. (Xi. P i) (THE i. P 1))
(Mi. inp € input (actions (L)) U inner (actions (L! 1)) A i < length L), blast)
apply (rule thel’)
apply (rule ex-exil)
apply (drule-tac L = Inl in set-aggr-filter.element-somewhere-in-list)
apply (erule ezFE)
apply (rule-tac z = i in exl)
apply (erule-tac z = (g1 ! i, Inl 1 4, Outl ! i, g2 ! 4, L ! ©) in ballE)
apply clarsimp
apply (erule disjE)
apply (erule conjE)
apply (fold step-def)
apply (drule-tac step-respects-signature(2))
apply blast
apply blast
apply (subgoal-tac (q1 Vi, Inl Vi, Outl ! i, g Vi, L' 4) €
{(q1 ! 4, zip Inl (zip Outl (zip g2 L)) ! i) |
i. 1 < min (length q1) (length (zip Inl (zip Outl (zip q2 L))))}, blast)
apply (rule CollectI)
apply (rule-tac x = i in exl)
apply (rule congI)
apply (erule-tac conjE)+
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apply (subst nth-zip, assumption, bestsimp)
apply (subst nth-zip)
apply (erule-tac t = length Outl and s = length L in ssubst)
apply (erule-tac t = length L and s = length Inl in subst)
apply assumption
apply (subgoal-tac length qo = length L)
apply (subst length-zip)
apply (erule-tac t = length q2 in ssubst)
apply (subst lower-semilattice-locale.min-maz.less-eq-less-inf .inf-idem)
apply (erule-tac t = length L and s = length Inl in subst)
apply assumption
apply (rule-tac f = states in list-times-compr-same-length)
apply assumption
apply (subst nth-zip)
apply (subgoal-tac length qo = length L)
apply (erule-tac t = length q2 and s = length L in ssubst)
apply (erule-tac t = length L and s = length Inl in subst)
apply assumption
apply (rule-tac f = states in list-times-compr-same-length)
apply assumption
apply (erule-tac t = length L and s = length Inl in subst)
apply assumption
apply (rule refl)
apply bestsimp
apply (rename-tac i j)
apply (subgoal-tac {inp} C input (actions (L ! 1)) U inner (actions (L ! 1)))
apply (subgoal-tac {inp} C input (actions (L ! j)) U inner (actions (L j)))
apply (frule-tac L = Land I = {inp} and i = i and j = j
in matchFSMList-shared-same-indez )
by (simp)+

lemma source-machine-length [intro]:
[matchFSMList L; ¥ A € set L. serial A; step (asynComposition L) q1 In Out qo; inp € In]
= source-machine L inp < length L
apply (simp add: source-machine-def )
apply (subgoal-tac
(Ai. (inp € input (actions (L1 i)) V inp € inner (actions (L!14))) A i < length L)
(THE i. (inp € input (actions (L! 1)) V inp € inner (actions (L 1))) A i < length L),
force)
apply (rule thel’)
apply (rule ex-exll)
apply (frule-tac asynComposition Valid)
apply (clarsimp simp: step-def asynComposition-def asynCompositionRaw-def
Let-def asynComposition Valid)
apply (drule-tac set-aggr-filter.element-somewhere-in-list)
apply (erule-tac exE)
apply (rule-tac x = i in exl)
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apply simp
apply (drule-tac bool-and-map.everyA)
apply (rename-tac qly y qla i)
apply (subgoal-tac (qly ! i, Inl Vi, Outl ! 1, qlo Vi, L' i) €
set (zip qly (zip Inl (zip Outl (zip qla L)))))
apply (erule-tac x = (qly Vi, Inl Vi, Outl ! i, qlo ' i, L'! 1) in ballE-in)
apply (simp add: split-def)
apply (case-tac Inl ! i = {}, force)
apply simp
apply (erule conjE)+
apply (fold step-def)
apply (drule-tac step-respects-signature(2))
apply force
apply (subst in-set-conv-nth)
apply (rule-tac z = i in exl)
apply force
by (rule-tac L = Land I = {inp} and i = z and j = y
in matchF'SMList-shared-same-indez, force+)

lemma set-aggr-filter.empty-replicate [simp): set-aggr-filter F' (replicate len {}) = {}
by (induct len, simp+)

lemma set-aggr-filter.gobble-empty-replicate [simp,rule-format]:
i < len — set-aggr-filter F (replicate len {}[i := L]) = set-aggr-filter F' [L]

Aggregating arbitrary amounts of empty sets does not make any difference.
by (rule proofHole[of ?thesis])

lemma composite-actions.fold:
assumes matchF'SMList L
shows (U A € set L. input (actions A)) — (UA € set L. output (actions A)) =
input (actions (asynComposition L))
and (UA € set L. output (actions A)) — (UA € set L. input (actions A)) =
output (actions (asynComposition L))
and (UA € set L. inner (actions A)) U ((UA € set L. input (actions A)) N
(UA € set L. output (actions A))) = inner (actions (asynComposition L))
apply succeed
apply (insert (matchFSMList L))
apply (frule asynComposition Valid)
apply (clarsimp simp: step-def asynComposition-def asynCompositionRaw-def
Let-def asynComposition Valid)
apply (subst input-access, rule matchFSMList-produces-actsig, assumption)
apply (rule refl)
apply (insert (matchFSMList L)
apply (frule asynCompositionValid)
apply (clarsimp simp: step-def asynComposition-def asynCompositionRaw-def
Let-def asynComposition Valid)
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apply (subst output-access, rule matchFSMList-produces-actsig, assumption)
apply (rule refl)
apply (insert (matchFSMList L)
apply (frule asynComposition Valid)
apply (clarsimp simp: step-def asynComposition-def asynCompositionRaw-def
Let-def asynComposition Valid)
apply (subst inner-access, rule matchFSMList-produces-actsig, assumption)
by (rule refl)

lemma composite-statespace.fold:
assumes matchF'SMList L
shows (list-times-compr L (AA. states A) x

powermultiset (((J A€set L. inner (actions A)) U (U A€set L. input (actions A)) N

(U A€set L. output (actions A)))) =

states (asynComposition L)
apply (insert (matchFSMList L)
apply (frule asynComposition Valid)
by (bestsimp simp: step-def asynComposition-def asynCompositionRaw-def

Let-def asynComposition Valid)

lemma step-respects-statespace [rule-format]:
shows step A ¢q1 In Out g0 — q1 € states A
and step A q1 In Out go — q2 € states A
apply succeed
apply (rule asynfsm.unfold)
apply (clarsimp simp: step-def steps-access actions-access)
apply (unfold asynfsm-def, clarsimp)
apply (erule-tac x = (q1, In, Out, q2) in ballE-in, assumption, blast)
apply (rule asynfsm.unfold)
apply (clarsimp simp: step-def steps-access actions-access)
apply (unfold asynfsm-def, clarsimp)
by (erule-tac z = (q1, In, Out, q2) in ballE-in, assumption, blast)

lemma list-times-compr.arbitrary-merging-update [intro,rule-format]:

llength Ly = length Lo; length Lo = length Ls; i < length Ly; Ly € list-times-compr L3 f;
Ly € list-times-compr Ls f] =

Ly[i == Lo ! 1] € list-times-compr L3 f

Consider a cross-product of length n of a list of sets. Now consider two tuples t and s out of
this cross-product. Clearly switching some components between s and t will still lead to tuples
within the cross-product.

by (rule proofHole[of ?thesis])

lemma powermultiset-includes-subset:
[A € powermultiset S; B C# A] = B € powermultiset S
apply (simp add: powermultiset-def )

apply (unfold set-of-def)
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apply (subgoal-tac Vz.z €# B — 1z € S, blast)
apply (subgoal-tac Vz.x e# A — z € 9)
prefer 2 apply blast
apply (rule alll)
apply (erule-tac z = z in allE)
apply clarsimp
apply (subgoal-tac xz €# A)
apply blast
apply (drule-tac © = z and A = B and B = A in mset-leD, assumption)
by simp

lemma powermultiset-keeps-subset: [A C B] = powermultiset A C powermultiset B
apply (simp add: powermultiset-def )

apply (unfold set-of-def)

by blast

lemma powermultiset-contains-multiset-of :
[A C B] = DrahflowTools.multiset-of A € powermultiset B

Completely parallel to powersets.

by (rule proofHole[of ?thesis])

lemma powermultiset-two-elements-implies-union:
[A € powermultiset S; B € powermultiset S| = A + B € powermultiset S

Completely parallel to powersets.

by (rule proofHole[of ?thesis])

lemma multiset-difference-subset-positive: A — S CH A
by (rule proofHole[of ?thesis])

lemma confluence:
assumes compatibleMachines: matchFSMList L
and serialMachines: ¥V A € set L. serial A
and parallelStep: step (asynComposition L) (ql1, M1) In Out (qls, M3)
and singleAction: i € In
shows
3 Outi qla Ma. step (asynComposition L) (qly, M1) {i} Outi (qla, M2) A
(In = {i} V step (asynComposition L) (qla, M2) (In — {i}) (Out — Outi) (ql3, M3))
proof —
from compatibleMachines have validComposition: asynCompositionRaw L € asynfsm
by (rule asynComposition Valid)
from parallelStep and compatibleMachines and serialMachines
have finiteActions: finite In by blast

from parallelStep and validComposition
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obtain Inl and Outl where

let inputs = ((UA € set L. input (actions A)) — (UA € set L. output (actions A))) in
let outputs = ((U A € set L. output (actions A)) — (UA € set L. input (actions A))) in
let inners = ((UA € set L. inner (actions A)) U
(UA € set L. input (actions A) N (JA € set L. output (actions A)))) in
let @ = ((list-times-compr L (AA. states A)) x (powermultiset inners)) in
(
bool-and-map (\(qi1, ini, outi, qig, A1).
((step Ai qiy ini outi qis N multiset-of (ini N input (actions Ai) N inners) CH# Mq) V
(ini = {} A outi = {} A gir = gis)))
(zip qly (zip Inl (zip Outl (zip qls L)))) A
In = set-aggr-filter (inputs U inners) Inl A In # {} N Out = set-aggr-filter outputs Outl N
Ms = (M1 — multiset-of In) + multiset-of (set-aggr-filter inners Outl) A
(qlh, M1) € Q A (qls, M3) € Q A length qly = length L A length Inl = length L A
length Outl = length L N length qls = length L
)
by (bestsimp simp: step-def asynComposition-def asynCompositionRaw-def
Let-def meta-allE[where © = Inl] meta-allE[where z = Outl])
note conditionsOnInlAndOutl = this

def Outi-def: Outi = Outl | source-machine L i
def inners-def: inners = inner (actions (asynComposition L))

show ?thesis
proof (rule-tac x = Outi in ezl
rule-tac ¥ = qly[source-machine L i := ql3 | source-machine L i] in exl,
rule-tac © = My — multiset-of {i} + multiset-of (inners N Outi) in exl,
rule congjl)
from wvalidComposition
show step (asynComposition L) (gly, M1) {i} Outi
(ql1[source-machine L i := ¢l | source-machine L i|, M1 —
DrahflowTools.multiset-of {i} + DrahflowTools.multiset-of (inners N Outi))
proof (clarsimp simp: step-def asynComposition-def asynCompositionRaw-def Let-def,
rule-tac © = replicate (length L) {} [source-machine L i := {i}] in exl,
rule-tac x = replicate (length L) {} [source-machine L i := Outi] in exl)
let ?condl = bool-and-map (A(qi1, ini, outi, qio, Ai). (qi1, ini, outi, gia) € steps Ai A
DrahflowTools.multiset-of (ini N input (actions Ai) N
((U Aeset L. inner (actions A)) U (U A€set L. input (actions A)) N
(U Aeset L. output (actions A)))) CH#H M,
Vong = {} A outi = {} A qi1 = qi2)
(zip qly (zip (replicate (length L) {}[source-machine L i := {i}])
(zip (replicate (length L) {}[source-machine L i := Outi))
(zip (ql1[source-machine L i := qls ! source-machine L i]) L))))
let ?cond2 = {i} = set-aggr-filter (U A€set L. input (actions A)) —
(U A€set L. output (actions A)) U ((U A€set L. inner (actions A)) U
(UAeset L. input (actions A)) N (U A€set L. output (actions A))))
(replicate (length L) {}[source-machine L i := {i}])
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let ?cond3 =

Outi = set-aggr-filter (U A€set L. output (actions A)) — (J A€set L. input (actions A)))

(replicate (length L) {}[source-machine L i := Outi])
let ?cond/ = DrahflowTools.multiset-of (inners N Outi) =
DrahflowTools.multiset-of (set-aggr-filter
((UAeset L. inner (actions A)) U (U A€set L. input (actions A)) N
(U Aeset L. output (actions A)))
(replicate (length L) {}[source-machine L i := Outil))
let ?condba = ql € list-times-compr L states
let ?cond5b = My € powermultiset ((|J A€set L. inner (actions A)) U
(U A€set L. input (actions A)) N (U A€set L. output (actions A)))

let ?condba =

ql1[source-machine L i := ¢ls | source-machine L i] € list-times-compr L states
let ?cond6b =

My — DrahflowTools.multiset-of {i} + DrahflowTools.multiset-of (inners N Outi)

€ powermultiset ((|J A€set L. inner (actions A)) U
(U Aeset L. input (actions A)) N (U A€set L. output (actions A)))

let ?cond7 =

length qly = length L A

length (replicate (length L) {}[source-machine L i := {i}]) = length L A

length (replicate (length L) {}[source-machine L i := Outi]) = length L A

length qly = length L

from compatibleMachines serialMachines parallelStep and singleAction
have ?cond?2
apply (subst set-aggr-filter.gobble-empty-replicate, rule source-machine-length)
apply (simp add: set-aggr-filter-def)
apply (subst composite-actions.fold, assumption)+
apply (frule step-respects-signature(2))
by blast

moreover

from compatibleMachines serialMachines parallelStep and singleAction
have ?cond3
apply (subst set-aggr-filter.gobble-empty-replicate, rule source-machine-length)
apply (simp add: set-aggr-filter-def )
apply (subst composite-actions.fold, assumption)+
apply (frule step-respects-signature(2))
apply (unfold Outi-def)

Clearly the source machine will only have emitted valid outputs.

by (rule proofHole[of Outl ! source-machine L i =
Outl | source-machine L i N output (actions (asynComposition L))])

moreover
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from compatibleMachines serialMachines parallelStep and singleAction
have ?cond)
apply (subst set-aggr-filter.gobble-empty-replicate, rule source-machine-length)
apply (simp add: set-aggr-filter-def )
apply (subst composite-actions.fold, assumption)+
apply (unfold inners-def)
apply (rule-tac f = multiset-of in eg-cong-fun-app)
by blast

NN N

moreover

from compatibleMachines and parallelStep
have ?cond5a N\ ?cond5b

apply (insert compatibleMachines)

apply (insert parallelStep)

apply (drule step-respects-statespace)

apply (subgoal-tac (qli, M1) € list-times-compr L states X

powermultiset ((|J A€set L. inner (actions A)) U
(U Aeset L. input (actions A)) N (U A€set L. output (actions A))))
apply blast

by (subst composite-statespace.fold, assumption+)

moreover
from conditionsOnInlAndOutl have ?cond7 by (simp add: Let-def)
moreover

have ?cond6a N\ ?cond6b
proof (rule conjI)
show ¢ly[source-machine L i := ql3 | source-machine L i| € list-times-compr L states
apply (insert conditionsOnInlAndOutl, simp add: Let-def)
apply (rule list-times-compr.arbitrary-merging-update, simp, simp)
proof —
from compatibleMachines serialMachines parallelStep singleAction
have source-machine L i < length L by (rule source-machine-length)
moreover
have length ql; = length L by (insert conditionsOnInlAndOutl, simp add: Let-def)
ultimately
show source-machine L i < length ql; by simp

show gl € list-times-compr L states

by (insert conditionsOnInlAndOutl, simp add: Let-def)

show ql3 € list-times-compr L states

by (insert conditionsOnInlAndOutl, simp add: Let-def)
qed
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from conditionsOnInlAndOutl

have M IsCorrect: M1 € powermultiset ((|J A€set L. inner (actions A)) U
(U Aeset L. input (actions A)) N (U A€set L. output (actions A)))

by (simp add: Let-def)

moreover

from compatibleMachines
have newOutputlsCorrect: DrahflowTools.multiset-of (inners N Outi)
€ powermultiset (U A€set L. inner (actions A)) U
(U A€set L. input (actions A)) N (U A€set L. output (actions A)))
apply (subst composite-actions.fold, assumption)+
apply (unfold inners-def )
by (blast intro: powermultiset-contains-multiset-of )

ultimately
show M1 — DrahflowTools.multiset-of {i} +
DrahflowTools.multiset-of (inners N Outi) € powermultiset
((U Aeset L. inner (actions A)) U
(U A€set L. input (actions A)) N (U A€set L. output (actions A)))
apply (unfold inners-def )
proof (rule powermultiset-two-elements-implies-union )
show M — DrahflowTools.multiset-of {i} € powermultiset
((U Aeset L. inner (actions A)) U
(U A€set L. input (actions A)) N (U A€set L. output (actions A)))
using M IsCorrect
proof (rule powermultiset-includes-subset)
show M1 — DrahflowTools.multiset-of {i} CH# M,
by (rule multiset-difference-subset-positive)
qed

show DrahflowTools.multiset-of (inner (actions (asynComposition L)) N Outi) €
powermultiset ((J A€set L. inner (actions A)) U
(U A€set L. input (actions A)) N (U A€set L. output (actions A)))
by (insert newQutputlsCorrect, unfold inners-def, simp)
qed
qed

moreover

have ?cond1
proof (rule bool-and-map.everyR, subst set-zip, rule balll, fold step-def,
clarsimp, rename-tac iPos)
fix iPos
show
step (L iPos) (qly ! iPos) (replicate (length L) {}[source-machine L i := {i}] ! iPos)
(replicate (length L) {}[source-machine L i := Outi] | iPos)
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(ql1[source-machine L i := ql3 ! source-machine L i] ! iPos) A
DrahflowTools.multiset-of
(replicate (length L) {}[source-machine L i := {i}] ! iPos N
input (actions (L ! iPos)) N
((U A€set L. inner (actions A)) U
(U Aeset L. input (actions A)) N (U A€set L. output (actions A)))) C# M,
proof (cases iPos = source-machine L 1)
case True
show ?thesis
apply (insert (iPos = source-machine L i), insert conditionsOnInlAndOutl)
apply (clarsimp simp: Let-def)
apply (drule-tac list-times-compr-same-length)+
apply (insert source-machine-length[of L (ql1, M1) In Out (ql3, M3) i])
apply (simp add: compatibleMachines serialMachines parallelStep singleAction)
apply (unfold Outi-def)
apply (drule-tac bool-and-map.everyA)
apply (erule-tac x = (qly ! source-machine L i, {i}, Outl | source-machine L i,
qls ! source-machine L i, L | source-machine L i) in ballE-in)
apply (insert source-machine-length[of L (ql1, M1) In Out (ql3, M3) i])
apply (simp add: compatibleMachines serialMachines parallelStep singleAction)
apply (unfold set-zip)
apply clarsimp
apply (rule-tac x = source-machine L i in exl, clarsimp)
apply (insert singleAction conditionsOnInlAndQOutl)
apply (clarsimp simp: Let-def)
apply (drule bool-and-map.everyA)
apply (rule directContradiction)
apply (insert source-machine-input[of L (ql1, M1) In Out (qls, M3) 1])
apply (simp add: compatibleMachines serialMachines parallelStep singleAction)

From {i} # Inl ! source-machine L i and i € input (actions (L ! source-machine L 1)) V
i € inner (actions (L ! source-machine L 7)) follows a contradiction.
apply (rule proofHole|of False])

apply (insert source-machine-length[of L (ql1, M1) In Out (ql3, M3) i])
by (simp add: compatibleMachines serialMachines parallelStep singleAction)

next

case Fulse
show ?thesis

This case can never occur, as all input and inner signatures are disjunct.

by (rule proofHole[of ?thesis])
qed
qed
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ultimately
show Zcondl A ?cond2 N ?cond3 N ?condf N ?condba N Zcond5b N
2condba N\ ?cond6b N Pcond?

by blast

qed

next

show In = {i} V step (asynComposition L)
(ql1[source-machine L i := ql3 | source-machine L i],

M1 — DrahflowTools.multiset-of {i} + DrahflowTools.multiset-of (inners N Outi))
(In — {i}) (Out — Outi) (qls, M3)
proof (cases In = {i})
case True thus ?thesis by blast
next
case False
with validComposition
show ?thesis
proof (clarsimp simp: step-def asynComposition-def asynCompositionRaw-def Let-def
rule-tac x = Inl[source-machine L i := {}] in ezl
rule-tac x = Outl[source-machine L i := {}]| in exl)
let ?condl = bool-and-map (A(qi1, ini, outi, qia, Ai). (qi1, ini, outi, qiz) € steps Ai A
Drahflow Tools.multiset-of (ini N input (actions Ai) N
((UAeset L. inner (actions A)) U
(U Aeset L. input (actions A)) N (U A€set L. output (actions A))))
C# My — DrahflowTools.multiset-of {i} +
DrahflowTools.multiset-of (inners N Outi) V
ini = {} A outi = {} A qiy = qi2)
(zip (qli[source-machine L i := qlg | source-machine L i])
(zip (Inl[source-machine L i := {}]) (zip (Outl[source-machine L i := {}])
(zip ql3 L))))
let ?cond2 = In — {i} = set-aggr-filter (U A€set L. input (actions A)) —
(U Aé€set L. output (actions A)) U
((U A€set L. inner (actions A)) U
(U Aeset L. input (actions A)) N (U A€set L. output (actions A))))
(Inl[source-machine L i := {}])
let ?cond3 = = In C {i}
let ?cond/ = Out — Outi = set-aggr-filter ((J A€set L. output (actions A)) —
(U Aeset L. input (actions A)))
(Outl[source-machine L i := {}])
let ?cond5 = M3 = My — DrahflowTools.multiset-of {i} +
DrahflowTools.multiset-of (inners N Outi) —
DrahflowTools.multiset-of (In — {i}) + DrahflowTools.multiset-of
(set-aggr-filter
((U A€set L. inner (actions A)) U
(UAeset L. input (actions A)) N (U A€set L. output (actions A)))
(Outl[source-machine L i := {}]))

110



let ?condba = qli[source-machine L i := ql3 | source-machine L i| €
list-times-compr L states
let ?cond6b = My — DrahflowTools.multiset-of {i} +
DrahflowTools.multiset-of (inners N Outi) € powermultiset
((U A€set L. inner (actions A)) U
(UAeset L. input (actions A)) N (U A€set L. output (actions A)))
let ?cond7a = qls € list-times-compr L states
let ?cond7b = M3 € powermultiset ((J A€set L. inner (actions A)) U
(U Aéeset L. input (actions A)) N (U A€set L. output (actions A)))
let ?cond8 = length qly = length L A length (Inl[source-machine L i := {}]) = length L A
length (Outl[source-machine L i := {}]) = length L A
length qls = length L

In principle parallel to the above proof about the single element.

have ?condl by (rule proofHole|of ?thesis])

moreover
have ?cond2 by (rule proofHole|of ?thesis])

moreover

have ?cond3 by (rule proofHole|of ?thesis])

moreover

have ?condj by (rule proofHole|of ?thesis])

moreover

have ?cond5 by (rule proofHole|of ?thesis])

moreover

have ?cond6a N ?cond6b by (rule proofHole|of ?thesis])
moreover

have ?cond7a N ?cond7b by (rule proofHole|of ?thesis])
moreover

have ?cond8 by (rule proofHole|of ?thesis])
ultimately

show ?2condl N Zcond2 N ?cond8 N 2cond N ?cond5 A Pcondba A Zcond6b N
Zcond7a N\ ?cond7b N ?cond8
by blast
qed
qed
qed
qed

lemma confluence-corollary:

[matchFSMList Ly Nz. x € set L = serial z; P q;

Aq1 @ Out qo. [P q1; NOut qo. step (asynComposition L) q1 {1} Out g2] = P q2]
= step (asynComposition L) q1 In Out g3 — P qo

Via induction over the set In, taking one action out at a time always carrying along P.

by (rule proofHole[of ?thesis])
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inductive-set reachable :: ('q,’act)asynfsm = 'q set for A :: ('q,’act)asynfsm
where initial A € reachable A
and [q € reachable A; 3In Out. step A q In Out q'] = ¢’ € reachable A

lemma confluence-invariant:

[matchFSMList L; Nx. « € set L = serial z; q € reachable (asynComposition L);
P (initial (asynComposition L));
Aq1 @ Out qa. [P qu; step (asynComposition L) q1 {i} Out g2] = P ¢2]

= Py

apply (erule-tac reachable.induct, assumption)

apply (erule-tac exE)+

by (drule-tac g1 = ¢ and ¢ = ¢’and L = Land P = P and In = In and Out = Out
in confluence-corollary, blast+)

end
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